
Conceptual Space Markup Language (CSML): Towards the Cognitive Semantic Web

Benjamin Adams
Dept. of Computer Science

University of California, Santa Barbara
Santa Barbara, CA, USA

Email: badams@cs.ucsb.edu

Martin Raubal
Dept. of Geography

University of California, Santa Barbara
Santa Barbara, CA, USA

Email: raubal@geog.ucsb.edu

Abstract—CSML is a semantic markup language created
for the publishing and sharing of conceptual spaces, which are
geometric structures that represent semantics at the conceptual
level. CSML can be used to describe semantics that are not
captured well by the ontology languages commonly used in
the Semantic Web. Measurement of the semantic similarity of
concepts as well as the combination of concepts without shared
properties are common human cognitive tasks. However, these
operations present sources of difficulty for tools reliant upon
set-theoretic and syllogistic reasoning on symbolic ontologies.
In contrast, these operations can be modeled naturally using
conceptual spaces. This paper describes the design decisions
behind CSML, introduces the key component elements of a
CSML document, and presents examples of its usage.

Keywords-representation languages; ontology design; ontol-
ogy languages; semantic web; xml; conceptual spaces

I. INTRODUCTION

CSML is an XML-based semantic computing language
designed to represent the semantic content of information
using geometric and topological structures called conceptual
spaces [1], [2]. CSML differs from existing languages for
the Semantic Web and other semantic computing applica-
tions, because 1) it is based on a theory derived from the
paradigm of cognitive semantics and 2) inferences about
the information stored in CSML are made using linear
algebra and computational geometry operations rather than
set theoretic operations and syllogistic reasoning [3], [4].
These inferencing operations include semantic similarity
measurement and the learning of new concept combinations,
which will support semantic interoperability between web
services.

A fundamental goal of the Semantic Web is the in-
terchange of data encoded in a machine understandable
format by web services. The computational foundation of
the Semantic Web is the formal representation of con-
cepts and their relationships using the Resource Description
Framework (RDF) and the Web Ontology Language (OWL)
variants [5], [6]. These families of languages allow one
to describe semantic relationships between concepts and
ontologies, which can be queried using a first-order logic
reasoner. An underlying assumption to these methods is the
realist approach to semantics, which states that the meanings
of concepts are in the real world. That is, there is a direct

mapping between language terms and the world but there
is no consideration of how individuals understand concepts
differently. In contrast, cognitive semantics states that the
meanings of terms are cognitive structures in people’s minds.
This approach is of central importance for the Semantic
Web, because web services interface with human users.

In addition, these symbolic languages cannot well repre-
sent semantic similarity and complex concept combinations
in a manner accordant with their set theoretic foundations,
even though both of these operations are essential for under-
standing the meanings of concepts. Semantic similarity mea-
surement is fundamental to the categorization of concepts,
since concepts are classified with other concepts with which
they are most similar [7], [8]. Using ontology languages
that represent classes as sets of objects, the combination of
concepts is measured as the intersection of the properties
of the two classes. However, this method breaks down
when combining concepts without shared properties. Take
for example Truman Capote’s original classification of his
book In Cold Blood as a non-fiction novel, a previously
unknown genre. Non-fiction novel combines the concepts
non-fiction and novel. The novel concept has no intersecting
properties with the non-fiction concept, since a novel has the
property of being a work of fiction. However, when Capote
first coined it people had no trouble making sense of this
concept combination even though they had never heard it
before. Likewise, ad hoc categories (e.g., things to take to the
beach) are even harder to describe using ontology languages
because the objects that compose the group often do not
share any common properties [9].

As an alternative to the symbolic knowledge representa-
tion schemes listed above, Gärdenfors has proposed using
geometric structures called conceptual spaces to represent
concepts for the Semantic Web [10]. The semantic similarity
of concepts represented in a conceptual space is measured
naturally as an inverse function of their distance in the
space. In addition, well defined operations can be applied
to conceptual spaces to create new concept combinations,
even from concepts without shared properties [11]. In this
paper we present CSML, an XML-based interchange format
for conceptual spaces. This language is intended to be an
exchange format for sharing conceptual spaces, so that they



can be created and used by various semantic software tools.
Following a review of the related research in Section 2,

the structure of the paper is as follows. In Section 3, we
present a motivating example of a conceptual space and in
section 4 follow with a discussion of the general structure
of a CSML document. In section 5 we describe the syntax
of the elements in a CSML file, and conclude in section 6
with directions for future work.

II. BACKGROUND

A. Related Work

The representation of human knowledge in schemas and
ontologies has a long research history spanning diverse
fields such as databases, artificial intelligence, and cognitive
science [12], [13]. A common approach is to express units
of knowledge in a formal language, which is used to infer
new knowledge through logical deduction. More recently
the notion of the Semantic Web has been proposed, which
applies these techniques to knowledge stored at resources
on the web [3]. The primary emphasis in Semantic Web
research has been on the development of description logics.
However, other techniques are necessary to fully represent
semantic content, because description logics were chosen for
theoretical reasons (i.e., they are complete and decidable)
that come at the expense of expressibility of similarity and
uncertainty [10], [14].

The ability to integrate semantically heterogeneous infor-
mation from different sources is an essential goal towards
building a fully functional Semantic Web. Towards that goal
there has been a great deal of interest in developing methods
for mapping (or otherwise aligning, merging, etc.) one ontol-
ogy or schema to another [15]. Research on the integration
of heterogeneous information predates the Semantic Web
[16], but it has become an increasingly important problem
given the extremely heterogeneous and unstructured nature
of information on the web. A particular area of interest
is orchestrating the interoperation of heterogeneous web
services [17].

A number of tools for automating ontology matching have
been developed [18]. An important method is to impose
a metric for comparing the similarity of classes in the
different ontologies [19]. The application of probabilistic
machine learning algorithms to learn these similarities based
on feature sets has been put forward (see e.g., GLUE) [20].

B. Conceptual Space Theory

Conceptual space theory was conceived as a knowledge
representation scheme to support reasoning at the conceptual
level [2]. It stands in contrast to the symbolic representations
that have dominated ontology research for the Semantic
Web as well as earlier work on semantic databases. Con-
ceptual spaces are designed to be mid-level representations
that complement both high-level symbolic representations
and low-level connectionist representations. A formalization

of conceptual spaces that demonstrates how they can be
connected to high-level representations can be found in [21].

Conceptual spaces represent concepts as sets of convex
regions within multidimensional metric spaces called do-
mains. Each domain is made up of a set of integral quality
dimensions, which are separable from dimensions in other
domains. An example domain is color, which is made up
of three quality dimensions: hue, value, and saturation. The
quality dimensions present a means for measuring and order-
ing the objects within a domain based on their quality values.
Domains can be scientific or phenomenal. The dimensions of
a scientific domain are determined by scientific theories such
as Newtonian mechanics, whereas phenomenal domains can
be highly abstract. The decision of which domains to use
is determined by a particular application’s needs. Because
domains are dynamic geometric structures, mappings can
be made between different domain representations of the
same concept using geometric transformation and projection
operations.

Concepts are represented as sets of convex regions span-
ning one or more domains. A property is a special case
of a concept in one domain. For example, the property
red is represented as a convex region in the color domain.
An advantage of conceptual spaces is that taxonomies and
classifications are exposed by the topological relationships
of regions and there is no need to explicitly state these
relationships. For example, the convex regions that represent
penguin are contained within the regions that represent bird.

Properties and concepts can roughly be equated to ad-
jectives and nouns, respectively, in a natural language rep-
resentation. The convexity of conceptual regions allows
one to describe points in the regions as having degrees of
centrality, which aligns this representational framework with
prototype theory [8]. Analogous to concepts, instances are
sets of points spanning one or more domains that represent
individual objects. One use of instances is as training data
to learn new conceptual regions. Another is to define a
prototype for a given concept. For example, the prototype
of a bird concept might be an instance of a robin.

Conceptual space theory describes query operations that
can be applied to the concepts represented in a conceptual
space, including semantic similarity and concept combi-
nation. The programming of conceptual spaces leverages
their geometric structure so that these operations can be
reduced to vector operations and problems of computational
geometry. The data model for CSML is based on a formal
conceptual space algebra that defines a conceptual space as
a six-tuple, S = 〈∆,Γ, Ĭ, /,K, c〉 [22].
• ∆ is a finite set of domains, where a domain δ ∈ ∆.
• Γ is a finite set of concepts, where a concept γ ∈ Γ.
• Ĭ is a finite set of instances, where an instance ı̆ ∈ Ĭ .
• / is a finite set of contrast classes, where a contrast

class ?∈ /.
• K is a finite set of contexts, where a context k ∈ K.



• c is a constant similarity sensitivity parameter.
A concept is defined formally as a set of convex polytopes

[23]. A polytope can be described as a bounded set of linear
inequalities. In addition, a set of points can be defined that
make up the prototype instance for a concept.

In this algebra, the semantic similarity operation is defined
as an inverse exponential function of the distance between
two concepts (or their prototype instances): sim(d) = e−cd,
where d is the result of a distance function and c is the
similarity sensitivity parameter1. The context of a similarity
measurement is specified with a salience weighting on the
quality dimensions and domains when calculating distances.

Three types of concept combination operations are
also specified in the algebra: property-concept, concept-
concept, and contrast class-concept combinations. Property-
concept combinations are used to represent natural language
adjective-noun combinations such as red book. Concept-
concept combinations are complex noun-noun combinations
such as iron gate. In this case the regions of the modifying
concept may either intersect or override the modified concept
in one or more of the domains depending on the context.

A contrast class is a special case of property that is used
to describe subregions of conceptual regions and are akin to
secondary predicates in natural languages [24]. An example
contrast class is large in the physical space domain. For-
mally, a contrast class is a pair of parallel linear inequalities
representing the bounds of a minimum and a maximum
hyperplane intersecting a unit hypercube. The contrast class-
concept combination operation applies this range to another
region in the domain to produce a new region. Using this
technique one can, for example, represent chihuahua as a
subclass (i.e., subregions) of dog, but also represent large
chihuahua as a subclass of small dog, not large dog. Such
relationships are difficult to do using hierarchical symbolic
representation schemes designed for syllogistic reasoning.
We direct readers to review [22] for further details on these
similarity and concept combination operations.

Categorical reasoning can be performed on concepts in a
conceptual space without an explicit representation of links
between concepts such as those found in semantic networks
[25]. Instead, the topological relationships of the regions
that compose the concepts can be used to infer semantic
relationships using a Region Connection Calculus [26]. For
example, the is-a relationship can be tested by checking if
a region is contained within another region. The Voronoi
tessellation of a domain from a given set of prototype points
can be used to generate a set of category regions. Alternately,
the convex hull of a set of exemplar points can be used to
learn concepts. Furthermore, nonmonotonic reasoning can be
modeled through the application of context weights on the
dimensions of the domain, thereby altering the boundaries of
the regions and potentially reclassifying individual instances.

1This parameter is used to fine-tune the rate of similarity decay.

III. EXAMPLE FOR THE GEOSPATIAL SEMANTIC WEB

The following sections describe the structure and com-
ponents of CSML. To illustrate these components we use
an example of a conceptual space model created for a
geospatial semantic web service [27]. Although conceptual
space theory has generated interest in the geospatial informa-
tion theory community due to its spatialization approach to
knowledge representation, CSML (like OWL) is designed to
be universally applicable to any type of semantic computing
application.

A geographic information system (GIS) database will
often describe information about various geographic entities,
such as mountains, hills, streams, and lakes. These features
are common concepts, though their semantics may vary
from database to database as well as from user to user. For
instance, an object classified as a mountain by one GIS might
be classified as a hill by another. This is, in fact, a standard
ontology integration problem [28]. By representing different
instances of landscape objects (e.g., specific mountains)
using conceptual spaces, it becomes possible to measure
their semantic similarity regardless of their classification
[29]. This is because the objects are represented at the
conceptual level, which exposes their quality dimension
values. Furthermore, since concepts are defined in terms
of geometric regions, two different conceptualizations of
mountain, for example, can be reconciled by calculating
functional mappings from one convex region to another [30].
We will use a basic representation of a mountain concept
and some related domains, contrast classes, and contexts to
exemplify usage of CSML elements.

IV. CSML DOCUMENT

A Conceptual Space Markup Language (CSML) docu-
ment represents a hierarchy of conceptual space data struc-
ture elements in XML format. Figure 1 shows the top levels
of a sample CSML document. Figure 2 shows the hierarchy
of CSML tags. A CSML document is always rooted with
a csml:CSML tag and denotes the beginning and end of
a conceptual space model file. The top level elements in a
conceptual space model file are domains, concepts, contrast
classes, instances, and contexts. In the following section
we will define the syntax of each of these elements and
their constituent child elements from a top-down orientation,
beginning with the top-level tags and moving our way down
to the deepest and most primitive levels of the CSML tree.

A. CSML Schema and Extensibility

The syntax of CSML conforms to XML syntax rules.
For instance, all opening tags must have a corresponding
closing tag. Furthermore, the language-specific set of rules
that a CSML file must conform to are defined in the CSML
Schema, which is written in XML Schema [31]. The CSML
Schema can be used to validate CSML files and can be found
at: http://geocog.geog.ucsb.edu/csml/csml.xsd.



<?xml version="1.0"?>
<csml:CSML xml:base="http://www.example.org/example.csml"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:csml="http://geocog.geog.ucsb.edu/csml/csml-ns#">

<csml:Domain csml:ID="#Size">
...

</csml:Domain>
<csml:Concept csml:ID="#Mountain">

...
</csml:Concept>
<csml:ContrastClass csml:ID="#Tall" csml:domainID="#Size">

...
</csml:ContrastClass>
<csml:Instance csml:ID="#Matterhorn">

...
</csml:Instance>
<csml:Context csml:ID="#LocationImportant">

...
</csml:Context>

</csml:CSML>

Figure 1: Sample CSML file top levels.

Figure 2: CSML tag hierarchy.

A fundamental design principle behind CSML is exten-
sibility. The formalization of conceptual space theory is an
active research area and there are and no doubt will be differ-
ences among various formalizations that must be reconciled.
Therefore, the structure and syntax of CSML must be open
to revision and extension. Since CSML is XML-based, this
can be accomplished by creating an extended schema that
includes the base CSML Schema file.

B. CSML URIs

Conceptual space knowledge bases written in CSML
are designed to be stored as web documents in much
the same manner as OWL ontologies. Entities within a
CSML document file have unique identifiers in the form
of Uniform Resource Identifiers (URI). These identifiers are

used to connect conceptual space elements to each other.
For example, a prototype for a concept can be identified by
the prototype instance’s URI.

The identification of conceptual space elements using
URIs means that they are unique resources that can be
referred to no matter where they are located, which allows
one to create knowledge bases that span multiple CSML
documents. The use of URIs has a further advantage in that
it facilitates interoperability between knowledge bases, be-
cause uniquely identified quality dimensions can be mapped
to one another using transformation operations. Thus, even if
two data sources using different quality dimensions classify
the same real world entity as exemplars of two different
concepts, the equivalence of the exemplars can still be
determined by applying these mappings [30]. Furthermore,



concepts can be translated from one set of domains to an-
other, which affords the ability to quantitatively measure the
similarity of concepts described by different data sources.

V. CSML ELEMENTS

In this section we describe in detail the elements of a
CSML file. We show the tag for each element type along
with its description. We note here that we do not attempt a
formal model of the semantics of CSML using model theory.
Such a task requires work beyond the scope of this paper;
however, it is an important future goal, since a formal model
is required to have unambiguous interpretation of CSML
syntax.

There are two types of elements that can be child
nodes for any other element, the label of the element
and a longer description. The tags for these elements are
<csml:Label> and <csml:Description>. The label
is distinct from the element’s URI, and two different ele-
ments in a CSML file can have the same label. For example,
this situation may occur if a domain has only one quality
dimension (e.g., the age domain). Both of these elements
function as comments and can be useful for communicating
the intended use of the element to users. For brevity we do
not include the label and description tags when describing
the structure of other elements.

In the following subsections, we begin by defining CSML
data elements that are used to specify the geometric structure
of a conceptual space, namely the quality dimensions and
their classification into mutually exclusive domains. Follow-
ing that we show how to describe concepts, contrast classes,
instances, and contexts in CSML.

A. csml:Domain

The description of domain structures is the foundation of
using conceptual spaces as a representational framework for
semantic computing. Once domains are defined they can be
referred to by different users to define concepts and contexts
for different uses. In CSML a domain element will have
one or more quality dimension child elements. These quality
dimensions are integral quality dimensions that are separable
from dimensions defined in other domains. The following
is an example of the size domain defined with two quality
dimensions, height and width:
<csml:Domain csml:ID="#Size">

<csml:QualityDimension csml:ID="#Height">
<csml:Scale>ratio</csml:Scale>
<csml:Units>meters</csml:Units>

</csml:QualityDimension>
<csml:QualityDimension csml:ID="#Width">

<csml:Scale>ratio</csml:Scale>
<csml:Units>meters</csml:Units>

</csml:QualityDimension>
</csml:Domain>

In CSML syntax a quality dimension is identified by the
<csml:QualityDimension> tag. The csml:Scale

tag indicates the measurement level of the dimension: or-
dinal, interval, or ratio [32]. Nominal dimensions are not
directly supported in CSML. However, one solution for
including nominal data is to represent the nominal values
as property regions in a domain [33]. The csml:Units
element indicates the scale’s units as a string value. For sci-
entific dimensions with well-defined conversion mechanisms
the units value can be used to convert to other scales (e.g.
from inches to meters).

A quality dimension may also have a range of possible
values. For example, the longitude dimension in the geo-
graphical coordinate domain has a minimum value of -180.0
degrees and a maximum of 180.0 degrees. The range is spec-
ified with a <csml:Range> tag. The quality dimension
tag also has an optional attribute called csml:Circular,
which indicates that distances in the spaces are modulo the
range magnitude divided by two.
<csml:QualityDimension

csml:ID="#Longitude"
csml:circular="true">

<csml:Scale>interval</csml:Scale>
<csml:Range>

<csml:Min>-180.0</csml:Min>
<csml:Max>180.0</csml:Max>

</csml:Range>
<csml:Units>degrees</csml:Units>

</csml:QualityDimension>

B. csml:Concept

A concept is represented as a set of regions in one or
more domains and is denoted by a <csml:Concept>
tag. Properties, which are concepts in only one domain, are
also identified by this tag. The following is an abbreviated
example of how the concept mountain can be specified in
CSML (see figure 3).
<csml:Concept csml:ID="#Mountain"

csml:prototypeID="#MountainPrototype">
<csml:Region

csml:ID="#MountainSizeRegion"
csml:domainID="#Size">
<csml:AMatrix> ... </csml:AMatrix>
<csml:qVector> ... </csml:qVector>
<csml:bVector> ... </csml:bVector>

</csml:Region>
...

</csml:Concept>

A concept may have an associated prototype that is specified
with the <csml:prototypeID> tag. The prototype refers
to the URI for another CSML element that is defined
elsewhere. In many cases the prototype URI will point
to a <csml:Instance> element, though it can also
be another <csml:Concept> element. One might want
to define the prototype in terms of prototypical regions
rather than prototypical points. The regions that represent
a concept are child elements of the concept tag identified
by <csml:Region>. The example above shows only one
region (for the size domain), but complex concepts such as



mountain will have many more regions defined for other
domains, such as coordinates, color, climate, age, amount
of development, etc.

Each region is a multidimensional convex polytope within
a domain. A convex polytope can be mathematically defined
in two ways: 1) as the intersection of a set of half-spaces,
called an H-polytope, or 2) as the convex hull of a set of
points, called a V-polytope [23]. CSML currently supports
the H-polytope method for defining a region, but future
versions will allow V-polytopes as well, since it may be more
convenient to describe a region using point values in some
circumstances. A subset of the MathML markup language
is used by CSML to define mathematical primitives, i.e. the
matrices and vectors [34].

An H-Polytope is described as a system of linear inequali-
ties, represented in matrix form in CSML: Aq ≤ b, where A
is an m×n matrix, q is a column vector of n variables, and
b is a column vector of m constant values. Each q variable
corresponds to one of the n dimensions that make up the
domain and m is the number of facets (n − 1 dimensional
faces) of the polytope.

a11 a12 · · · an1

a21 a22 · · · an2

...
...

. . .
...

am1 am2 · · · anm



q1
q2
...
qn

 ≤


b1
b2
...
bm


In CSML A, q, and b are defined using the
<csml:AMatrix>, <csml:qVector>, and
<csml:bVector> tags respectively. The A matrix
uses the MathML syntax for matrices; each row is defined
with a <matrixrow> tag and the matrix values are found
in <cn> tags, e.g.:
<csml:AMatrix>

<matrixrow>
<cn> -1.0 </cn>
<cn> 0.0 </cn>

</matrixrow>
<matrixrow>

<cn> 0.6 </cn>
<cn> -1.0 </cn>

</matrixrow>
...

</csml:AMatrix>

Since the quality dimensions are not ordered in a domain
structure, the q vector definition is used to identify which
columns in A correspond to which dimensions. The q vector
uses the MathML vector notation where the variable in each
<ci> tag is a quality dimension URI.
<csml:qVector>

<ci> #Width </ci>
<ci> #Height </ci>

</csml:qVector>

The b column vector is defined similarly using <cn> tags.
<csml:bVector>

<cn> -0.25 </cn>
<cn> -0.3 </cn>

<cn> 0.8 </cn>
</csml:bVector>

We do not intend that users of CSML will hand-code H-
polytope representations of concepts very often. Software
tools will generate the appropriate CSML as the output of
learning operations such the application of the convex hull
algorithm on a set of training exemplars.

Figure 3: Concepts in normalized [0,1] size domain.

C. csml:ContrastClass

A contrast class is represented by a region bounded by one
or two parallel hyperplanes that intersect a unit hypercube.
The two hyperplanes are labeled min and max and take the
following form:

min : −a1q1 − a2q2 − · · · − anqn ≤ −b1
max : a1q1 + a2q2 + · · ·+ anqn ≤ b2

In CSML these equations are written as a row vector a,
a column vector q, and two values csml:ccMin and
csml:ccMax, which correspond to b1 and b2 in the equa-
tion above. The a vector is defined by a <csml:aVector>
tag and the q vector is the same as in the region tag above.
<csml:ContrastClass csml:ID="#Tall"

csml:domainID="#Size">
<csml:aVector>

<cn>-1.0</cn>
<cn>0.0</cn>

</csml:aVector>
<csml:qVector>

<ci>#Height</ci>
<ci>#Width</ci>

</csml:qVector>
<csml:ccMin> -0.7 </csml:ccMin>
<csml:ccMax> 1.0 </csml:ccMax>

</csml:ContrastClass>

Here the tall contrast class is defined as the top 30% of a
unit square along the height dimension. This contrast class
can be combined with the mountain concept by stretching
the unit square (and corresponding contrast class region) to



the shape of mountain in the size domain, centering it over
the prototype, and then finding the intersection of the two
to represent tall mountain (see figure 4). A formalization of
this operation is detailed in [22].

Figure 4: Tall contrast class + mountain concept in normal-
ized [0,1] size domain.

D. csml:Instance

An instance is a set of points in one or more domains.
In theory one can think of an instance as a concept com-
posed of convex regions of size zero. However, a unique
representation for instances is needed, since the H-polytope
representation used for concepts does not work for instances.
<csml:Instance csml:ID="#Matterhorn">

<csml:Point csml:ID="#MatterhornCoord"
csml:domainID="#Coordinates">

<csml:PointValues>
<cn>45.98</cn>
<cn>7.66</cn>

</csml:PointValues>
<csml:qVector>

<ci>#Latitude</ci>
<ci>#Longitude</ci>

</csml:qVector>
</csml:Point>
...

</csml:Instance>

E. csml:Context

Contexts in a conceptual space are defined generically,
as salience weights on conceptual space components. The
components that are weighted in a context must all be of
the same type (e.g., domains or quality dimensions) and
sum to 1.0. These weights are used by operations such as
semantic similarity, so that the results can be personalized
for a specific context [35]. For example, when calculating the
similarity of two mountains, in one context the geographical
locations of the mountains will be more salient and in

another context the sizes of the mountains will be more
salient.
<csml:Context csml:ID="#SizeImportant"

csml:type="domain">
<csml:Weight csml:cID="#Coordinates"> 0.2
</csml:Weight>
<csml:Weight csml:cID="#Size"> 0.8
</csml:Weight>

</csml:Context>

VI. CONCLUSIONS AND FUTURE WORK

Conceptual space theory presents a novel approach to
concept representation for semantic computing. The geo-
metric structure of conceptual spaces allows for a richer
representation of semantics than is possible with symbolic
ontology languages, which affords new methods for mea-
suring semantic similarity and analyzing concept combina-
tions. In this paper we have introduced CSML, a standard
interchange format for semantic computing applications to
describe conceptual spaces. The representation of concepts
using CSML will facilitate the creation and sharing of
descriptions of domain structures and concept regions, which
will form the basis of a cognitive semantic web.

Knowledge bases written in CSML are not necessarily in-
tended to supplant symbolic forms of representation such as
OWL ontologies but rather to augment the existing represen-
tation schemes, given the already broad investment in those
other technologies. Therefore, an important future work
direction will be to identify translations between topological
concept relations in conceptual spaces and existing methods
of taxonomic classification using ontology languages. In
addition, CSML does not currently support the description
of fuzzy concepts, correlations between regions in different
domains, or representations of incomplete information [36].
Such additions would greatly enrich the expressibility of
semantic content using CSML.

REFERENCES

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, Extensible Markup Language (XML) 1.0 (Fifth
Edition). W3C Recommendation, 2008.

[2] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought.
Cambridge: MIT Press, 2000.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, pp. 34–43, 2001.

[4] G. Lakoff, “Cognitive Semantics,” in Meaning and Mental
Representations, U. Eco, M. Santambrogio, and P. Violi, Eds.
Bloomington: Indiana University Press, pp. 119–154, 1988.

[5] G. Klyne and J. Carroll, Eds., Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Recom-
mendation, 2004.

[6] D. McGuinness and F. van Harmelen, Eds., OWL Web Ontol-
ogy Language Overview. W3C Recommendation, 2004.



[7] R. Goldstone, “The Role of Similarity in Categorization:
Providing a Groundwork,” Cognition vol. 52, pp. 125–157,
1994.

[8] E. Rosch, “Cognitive representations of semantic categories,”
Journal of Experimental Psychology: General, vol. 104, pp.
192–233, 1975.

[9] L. Barsalou, “Situated simulation in the human conceptual
system,” Language and Cognitive Processes, vol. 5, pp. 513–
562, 2003.

[10] P. Gärdenfors, “How to Make the Semantic Web More
Semantic,” in Formal Ontology in Information Systems, Pro-
ceedings of the Third International Conference (FOIS 2004).
Frontiers in Articial Intelligence and Applications, A. Varzi
and L. Vieu, Eds., vol. 114, pp. 153–164. Amsterdam: IOS
Press, 2004.

[11] P. Gärdenfors, “Conceptual Spaces as a Framework for
Knowledge Representation,” Mind and Matter, vol. 2, pp. 9–
27, 2004.

[12] R. Hull, and R. King, “Semantic Database Modeling: Survey,
Applications, and Research Issues,” ACM Computing Surveys,
vol. 19, pp. 201–260, 1988.

[13] J. Sowa, Knowledge Representation: Logical, Philosophical,
and Computational Foundations. Pacific Grove, CA: Brooks
Cole Publishing Co., 2000.

[14] A. Sheth, C. Ramakrishnan, and C. Thomas, “Semantics for
the Semantic Web: The Implicit, the Formal and the Power-
ful,” International Journal on Semantic Web and Information
Systems, vol. 1, pp. 1–18, 2005.

[15] N. Noy, “Semantic Integration: A Survey Of Ontology-Based
Approaches,” SIGMOD Record Special Issue on Semantic
Integration, 2004.

[16] Y. Arens, C. Chee, C. Hsu, and C. Knoblock, “Retrieving and
Integrating Data from Multiple Information Sources,” Inter-
national Journal of Intelligent and Cooperative Information
Systems, vol. 2, pp. 127–158, 1993.

[17] M. Burstein and D. McDermott, “Ontology Translation for
Interoperability Among Semantic Web Services,” AI Maga-
zine, vol. 26, pp. 71–82, 2005.

[18] E. Rahm and P. Bernstein, “A survey of approaches to
automatic schema matching,” The VLDB Journal, vol. 10, pp.
334–350, 2001.

[19] J. Euzenat and P. Valtchev, “Similarity-based ontology align-
ment in OWL-Lite,” in Proc. 15th European Conference on
Artificial Intelligence, Valencia (ES), pp. 333–337, 2004.

[20] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Ontol-
ogy Matching: A Machine Learning Approach,” Handbook
on Ontologies in Information Systems, S. Staab and R. Studer
(Eds.), Springer-Verlag, pp. 397–416, 2004.

[21] J. Aisbett and G. Gibbon, “A general formulation of con-
ceptual spaces as a meso level representation,” Artificial
Intelligence, vol. 133, pp. 189–232, 2001.

[22] B. Adams and M. Raubal, A Metric Conceptual Space Alge-
bra. in Spatial Information Theory - 9th International Con-
ference, COSIT 2009, Aber Wrac’h, France. Lecture Notes in
Computer Science, K. Stewart Hornsby, G. Ligozat, C. Clara-
munt, and M. Denis, Eds., pp. 51-68, Berlin: Springer, 2009.

[23] P. Grünbaum, Convex Polytopes, 2nd ed. V. Kaibel, V. Klee,
and G. Ziegler, Eds. New York: Springer, 2003.

[24] P. Gärdenfors, “Some Tenets of Cognitive Semantics,” in
Cognitive Semantics: Meaning and Cognition, J. Allwood and
P. Gärdenfors, Eds., Amsterdam: John Benjamins, pp. 19–36,
1990.

[25] P. Gärdenfors and M. Williams, “Reasoning About Categories
in Conceptual Spaces,” in Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence Morgan
Kaufmann, pp. 385–392, 2001.

[26] A. Cohn, B. Bennett, J. Gooday, and N. Gotts, “Qualitative
Spatial Representation and Reasoning with the Region Con-
nection Calculus,” GeoInformatica, vol. 1, pp. 275–316, 1997.

[27] M. Egenhofer, “Toward the Semantic Geospatial Web,” in GIS
’02: Proceedings of the 10th ACM international symposium
on Advances in geographic information systems, pp. 1–4,
2002.

[28] J. Heflin and J. Hendler, “Semantic Interoperability on the
Web,” in Extreme Markup Languages 2000.

[29] A. Schwering and M. Raubal, “Measuring Semantic Similar-
ity between Geospatial Conceptual Regions,” in GeoSpatial
Semantics - First International Conference, GeoS 2005, Mex-
ico City, Mexico, A. Rodriguez, I. Cruz, M. Egenhofer, and
S. Levashkin, Eds., vol. 3799, pp. 90–106. Berlin: Springer,
2005.

[30] M. Raubal, “Mappings for Cognitive Semantic Interoper-
ability,” in AGILE 2005 - 8th Conference on Geographic
Information Science, F. Toppen and M. Painho, Eds. pp. 291-
296, Instituto Geografico Portugues (IGP), Lisboa, Portugal,
2005.

[31] D. C. Fallside and P. Walmsley, XML Schema Part 0: Primer
Second Edition W3C Recommendation, 2004.

[32] S. Stevens, “On the Theory of Scales of Measurement,”
Science, vol. 103, pp. 677–680, 1946.

[33] O. Ahlqvist and H. Ban, “Categorical Measurement Se-
mantics: A New Second Space for Geography,” Geography
Compass, vol. 1, pp. 536–555, 2007.

[34] D. Carlisle, P. Ion, R. Miner, and N. Poppelier, Mathematical
Markup Language (MathML) Version 2.0. W3C Recommen-
dation, 2001.

[35] A. Dey and G. Abowd, “Towards a Better Understanding of
Context and Context-Awareness,” in CHI 2000 Workshop on
the What, Who, Where, When, Why and How of Context-
Awareness. The Hague, The Netherlands, 2000.

[36] O. Ahlqvist, “A Parameterized Representation of Uncertain
Conceptual Spaces,” Transactions in GIS, vol. 8, pp. 492–
514, 2004.


