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Abstract. One of the key deficiencies of the Semantic Web is its lack of cognitive plausibility. We argue that by accounting 
for people’s reasoning mechanisms and cognitive representations, the usefulness of information coming from the Semantic 
Web will be enhanced. More specifically, the utilization and integration of conceptual spaces is proposed as a knowledge rep-
resentation that affords two important human cognitive mechanisms, i.e., semantic similarity and concept combination. Formal 
conceptual space algebra serves as the basis for the Conceptual Space Markup Language (CSML), which facilitates the engi-
neering of ontologies using a geometric framework. We demonstrate the usefulness of the approach through a concrete exam-
ple and suggest directions for future work, especially the need for combining geometric representations and reasoning mecha-
nisms with existing Semantic Web structures.  
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1.  Introduction 

In 2004, Peter Gärdenfors argued that “the Seman-
tic Web is not semantic” because it is good for syllo-
gistic reasoning only and there is more to semantics 
than that [1]. In 2010, we claim here that the Seman-
tic Web is still not semantic in the human sense be-
cause it does not sufficiently account for people’s 
cognition, i.e., human conceptual representations and 
reasoning mechanisms. This must not to be confused 
with a search for Strong Artificial Intelligence, i.e., a 
Semantic Web whose intellectual ability cannot be 
distinguished from that of a human being [2]. But 
eventually, what comes out of the Semantic Web 
should be useful for people and it is our conviction 
that the better we integrate and account for people’s 
reasoning mechanisms and cognitive representations 
the more useful such information will be. 

Consider the example of looking for a warm cli-
mate vacation (Figure 1). This search involves sever-

al questions that cannot be handled by the current 
Semantic Web, such as what is the meaning of 
‘warm’ in a particular person’s context of climate and 
how important is this dimension compared to other 
dimensions, such as distance and cost? This example 
makes it clear that the Semantic Web has to be based 
on a solid foundation of human concept processing, 
including limited knowledge and uncertainty in order 
to become truly semantic. In addition, representation 
and processing of context information, is key. Se-
mantic models of context and contextualizing ontolo-
gies must account for human sensors and move into 
the direction of dynamic processes [3, 20]. 

More specifically, we argue that knowledge repre-
sentations underpinning the Semantic Web should 
afford two important human cognitive tasks: the effi-
cient calculation of semantic similarity (in the con-
text of the vacation example: how similar is the result 
to my ideal warm climate vacation?) and combina-
tions of concepts (‘warm’ and ‘climate’). However, 



the existing logical foundations of the Semantic 
Web—description logics and rules—presume a set-
based classification scheme that does a poor job of 
facilitating these operations. By adopting a geometric 
and topological representational framework called 
conceptual spaces to describe semantics at the con-
ceptual level, these operations can be defined in 
terms of an efficient vector algebra. This opens up the 
possibility to go beyond the classical concept combi-
nation possibilities of conjunction, disjunction, and 
negation. Conceptual spaces were conceived as a 
theory for how concepts are learned based on the 
paradigm of cognitive semantics [4], which empha-
sizes the role of similarity and prototype effects in 
categorization [5], and the importance of metaphori-
cal and metonymic reasoning. Combined with natural 
language processing and existing methods of senten-
tial representation, geometric conceptual representa-
tion has the potential to create a much richer and 
cognitively plausible Semantic Web [21]. 

 

 

Fig. 1. Search for warm climate vacation. 

2. Conceptual Space Algebra 

Conceptual spaces were introduced to represent in-
formation at the conceptual level [6]. They can be 
utilized for knowledge representation and sharing, 
and account for the fact that concepts are dynamic 
and change over time [7, 8]. A conceptual space is a 
set of quality dimensions with a geometric / topologi-
cal structure for one or more domains. Domains are 
represented by sets of integral dimensions, which are 
separable from all other dimensions. Concepts cover 
multiple domains and are modeled as n-dimensional 
regions. Every instance of a category can be repre-
sented as a vector in the conceptual space [9]. This 
allows for expressing the similarity between two in-

stances as a function of the spatial distance between 
their vectors. The utilization of conceptual space the-
ory within the Semantic Web requires a solid mathe-
matical foundation. Adams and Raubal [10] present-
ed a metric conceptual space algebra, which consists 
of formal definitions of its components and opera-
tions that can be applied to them. Conceptual spaces 
are defined as multi-leveled structures and a distinc-
tion is made between the representation of the geo-
metric elements (regions, points) and the conceptual 
elements (concepts, properties, instances). Further-
more, contrast classes—special types of properties, 
which have meanings that are dependent on the con-
cepts they modify—are specified. Context is defined 
as a set of salience weights that can be applied to 
components of any type in the conceptual space, and 
is therefore a first-order element of a conceptual 
space. Different algebraic operations, such as metric 
operations on points and regions, and context-
dependent similarity and concept combination query 
operations can then be applied to the elements of a 
conceptual space. 

 In order to facilitate the engineering of ontologies 
[22] using a geometric framework, languages must be 
developed to describe the geometric structures. The 
Conceptual Space Markup Language (CSML) is 
based on the described algebra and designed for this 
purpose. 

3. Conceptual Space Markup Language 

CSML [11] is an XML-based language that allows 
one to create an ontology of concepts, properties, 
instances, contrast classes, and contexts as defined in 
the algebra above. The following shows the climate 
domain described in CSML with two dimensions 
temperature and precipitation. 

 
<csml:Domain csml:ID="Climate"> 
  <csml:QualityDimension 
csml:ID="Temperature"> 
    <csml:Scale> interval </csml:Scale> 
  </csml:QualityDimension> 
  <csml:QualityDimension 
csml:ID="Precipitation"> 
    <csml:Scale> ratio </csml:Scale> 
  </csml:QualityDimension> 
</csml:Domain> 

 

Different climate properties (e.g., wet, dry, hot, 
cold, Californian, temperate) are represented as re-
gions within the climate domain. In CSML properties 
and contrast classes are described as systems of linear 
inequalities expressed using a variant of MathML. 



The following shows how one can represent warm as 
a contrast class in CSML. 

 
<csml:ContrastClass csml:ID="Warm" 
csml:DomainID="Climate"> 

  <csml:aVector> 
    <cn> 5.4 </cn> 
    <cn> 1.0 </cn> 
  </csml:aVector> 
  <csml:qVector> 
    <ci> Temperature </ci> 
    <ci> Precipitation </ci> 
  </csml:qVector> 
  <csml:ccMin> -3.0 </csml:ccMin> 
  <csml:ccMax> 4.6 </csml:ccMax> 

</csml:ContrastClass> 

 
As well, different classes of locations have differ-

ent climate properties (e.g., California climate) repre-
sented as regions in the climate domain bounded by, 
for example, minimum and maximum average tem-
peratures and precipitation measures. 

  

Fig. 2. Warm contrast class. 

For the scenario where the user wants to search for 
a warm climate vacation, it is straightforward to rep-
resent the requisite elements in CSML in a manner 
that affords semantic search based on context. Specif-
ically, one can frame the goal of this semantic search 
query by identifying the concepts that are most se-
mantically similar to the user’s idealized or prototyp-
ical warm vacation location depending on the user’s 
location. Here there are really two different kinds of 
context at play. First, there is context represented as 
salience weights on the dimensions for the purpose of 
similarity measurement. In the example, precipitation 
might be weighted as highly as temperature because 
for two locations to have the same climate both pre-
cipitation and temperature matter equally. This first 
kind of context is described using the 

csml:Context tag in CSML. Second, there is con-
text in terms of which climate property warm should 
modify. 

 

 

Fig. 3. Climate properties. 

 

Fig. 4. Combination of warm with climate properties (dark areas). 

The concept of a warm German vacation entails 
different semantics for the term warm than does 
warm California vacation (or for that matter warm 
coffee, which is actually cold!). As a contrast class, 
warm is represented in a conceptual space as a sub-
region of the entire climate domain (Figure 2). The 
combination of warm with another class is not the 
intersection but rather a geometric affine projection 
of the warm region onto the other class’ climate 
property (Figures 3 and 4). And unlike union and 
intersection this class constructor is asymmetric. 



With this kind of concept combination operation 
one can very easily reason non-monotonically that 
what is warm in Sweden is not warm in Europe even 
if European country is modeled as a generalization or 
super-class of Sweden. Further, the geometric repre-
sentation allows one to represent classes in terms of 
prototypical instances, i.e., as vectors or regions in a 
conceptual space [12]. This prototype representation 
is far more natural for representing classes without 
clear necessary and sufficient features (i.e., classes 
with degrees of membership determined by similarity 
to a prototype ideal, such as classes of shapes). 

We should note that a semantic search query such 
as the one above does require a system that can iden-
tify which terms are modifying other terms. However, 
this problem is true for description logics as well and 
illustrates the need for a natural language processing 
[13] layer for the Semantic Web. 

4. Where To Go From Here 

Since it requires identifying the measurable di-
mensions of a property, the geometric representation 
might on the face of it seem overly restrictive. How-
ever, there is ample evidence that spatial metaphors 
are used in conceptualizations for many domains of 
knowledge [14], including any ordinal, interval, and 
ratio scaled measurements of observable phenomena. 
In addition, this representation does not necessarily 
require that the dimensions be identified in the cases 
when they are modeled as latent variables using tech-
niques such as multidimensional scaling. Further, 
from the ontology engineer’s perspective it makes 
little sense in many cases to translate the semantics of 
metric, spatially ordered data into a description logic 
representation, because 1) it adds unnecessary com-
plexity, since transitivity, disjointness, and other log-
ical characteristics emerge directly from the order 
topology of the space and 2) it affords the use of line-
ar algebra and computational geometry algorithms as 
the foundations for many reasoning operations, which 
can be much more efficient. From a cognitive per-
spective the latter point aligns with the argument that 
much similarity measurement happens at the percep-
tual level without the need for higher-order cognitive 
representation [15]. Nevertheless, an important future 
development will be the formalization of mappings 
between conceptual space representations and OWL 
based ontologies. This includes the representation of 
vague information in Fuzzy OWL [16] and compar-

ing the semantic expressiveness between conceptual 
spaces and Fuzzy OWL. 

Description logics and conceptual spaces are two 
different knowledge representation frameworks with 
different degrees of semantic expressiveness and thus 
mappings between the two can result in a loss of in-
formation. Generally speaking, numeric datatype 
properties and object properties can be mapped to 
dimensions and regions in domains, respectively, but 
there are exceptions to this rule. In most cases the 
taxonomic relationships in a conceptual space repre-
sentation can be ‘frozen’ into a description logic-
based representation, but in doing so it loses expres-
siveness. For example, categories that are defined 
using prototypes will entail different memberships 
depending on context (i.e., dimension weights, which 
may be set by the user or automatically be assigned 
through learning from user behavior), so a conceptual 
space can generate a number of different OWL ontol-
ogies dependent on context. In addition, the notion of 
membership in a category existing on a continuum 
based on similarity is lost. The representation of re-
gions as sets of linear inequalities might be achieva-
ble with the proposed OWL 2 Linear Equations data 
range extension, but arguably in a very cumbersome 
manner1. Since it is likely that ontology engineers 
will want to retain their ability to use all the existing 
features of OWL, a hybrid (or dual) representation 
will be in order. Such a hybrid representation would 
give ontology engineers the flexibility to define clas-
ses based on necessary and sufficient features or pro-
totypes and use set based class constructors as well as 
more cognitively plausible methods based on contrast 
classes. 

In the semantic web layer cake we conceive of 
the CSML layer as being a layer that sits on top of 
XML and beside rules and OWL. CSML can be an 
earlier stage in the pipeline for building an OWL rep-
resentation, though it also has a role within the rea-
soning pipeline, e.g., when doing similarity meas-
urement. Furthermore, reasoning can be done on con-
ceptual spaces without mapping to OWL and this 
reasoning can exploit the characteristics of the geo-
metric representation as a foundation for more com-
plex sorts of class constructors. The following steps 
illustrate an example of how the CSML layer can be 
used to map a set of classes represented by prototypes 
in a feature space to an OWL ontology (see also Fig-
ure 5). 

                                                            
1
http://www.w3.org/TR/2009/WD-owl2-dr-linear-20090421/ 



 
1. A machine learning algorithm is used to learn 

points of central tendency for classes of observa-
tions. These points are interpreted as prototypical 
instances of the classes. Note that most machine 
learning algorithms of this sort are flat, so in 
conceptual space parlance it is in fact properties 
that are being learned not classes (i.e., they are in 
one domain). 

2. The dimensions and points are represented as 
quality dimensions and instances in CSML. 

3. If the classes are disjoint then the Voronoi tessel-
lation of the space based on these prototypes can 
be used to identify regions representing different 
properties. By placing different saliency weights 
on the dimensions the Voronoi tessellation may 
classify a particular observation differently [17]. 

4. A mapping is made from CSML to OWL for a 
given context. 
 
A mapping from a CSML ontology to an OWL 

ontology is a morphism that reifies the quality dimen-
sions, properties, instances, and concepts as OWL 
classes, properties, and individuals (see also [18]). In 
a metric conceptual space quality dimensions are 
mapped to transitive datatype properties, properties to 
object properties, instances to individuals, and con-

cepts to classes. Alternately, domains can be mapped 
to object properties and conceptual space properties 
to individuals. A logical formalization of this map-
ping as a function that takes two input parameters, a 
conceptual space knowledge base and a set of context 
weights, and outputs a SROIQ(D) description logic 
knowledge base is a current research objective. Note 
in particular, that by mapping conceptual space prop-
erties to object properties information about the geo-
metric structure is lost, therefore maintaining a link to 
the CSML representation that generated the OWL 
ontology can be used for finer-grained similarity rea-
soning. In addition, conceptual spaces are well-suited 
for non-monotonic changes based on new observa-
tions, e.g., adding new points to the original space 
can change the points of central tendency and the 
resulting property regions, which can be mapped to 
an updated OWL ontology. 

This leads directly to the question of how we will 
be able to generate cognitively plausible ontologies in 
the future not only from measurement data but from 
the mass of user-generated data such as Volunteered 
Geographic Information (VGI) [19]. It will also be 
necessary to contextualize these ontologies on the fly 
(see the warm vacation example used here). With 
conceptual space representations this may be done by 
putting weights on the dimensions and modifying the 

Fig. 5. Example of context changing classification.



classifications. If we know about people’s prototypi-
cal concepts for different domains, how can we con-
struct ontologies from there? 

The future will show whether what is out there 
can be integrated with conceptual space theory and 
whether such combination and integration of ideas 
will eventually pave the way to a truly cognitively 
plausible Semantic Web, a Semantic Web that is use-
ful for its users. 
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