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SUMMARY 
The growing number of information services and data sources requires the development of standards 
for interoperability. Ontologies are one possibility to describe domains and their properties for 
interoperable use. Those ontologies that are conformant to the standards can be used as underlying 
models for different GIS and data sources that deal with the same domain. Otherwise, non-
interoperability between systems is a likely consequence. Wrappers solve this problem. They aim at 
transforming information from one domain into another without semantic loss or errors. In this 
paper, the wrapper-based navigation services ‘route calculation’ and ‘route guidance’ are developed 
as part of an Ontology-Driven Geographic Information System. External ontologies define the 
transformation results. Solving this task requires a knowledge base consisting of ontological axioms 
and their translations. If semantic translation is impossible then error codes are returned as the 
translation result for the axiom. 
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INTRODUCTION 
Throughout the past years, the growing abilities of computers and the Internet caused the problem of 
non-interoperability among information services and data sources. If interoperability between services 
and data sources is successful, then information transmission works in both ways without creating 
semantic loss or errors.  
In this paper, semantic interoperability between the wrapper-based navigation services route 
calculation and route guidance and a geographic data source is analyzed. The motivation for this 
choice is to investigate how one data source can deliver different semantically correct information for 
various travelling modes and user groups, such as hikers and car drivers, by redefining the semantics 
of the data. An example for a semantic misunderstanding was the likely cause for a car accident that 
happened after a navigation service gave the driver a wrong instruction. This driver drove his car into 
a river after being instructed by his electronic navigation service to continue driving over a supposed 
bridge, which was a ferry connection in reality. A detailed description of this case can be found in 
(Kuhn & Raubal 2003) and (Raubal & Kuhn 2004). 
One approach for achieving semantic interoperability is the use of ontologies. If services or data 
sources communicate with the help of ontologies or commit to the same ontology then semantic 
interoperability becomes possible. In GIScience, the ISO Geographic Data Files (GDF) and the 
OpenGIS® Abstract Specification (OAS) are two standards for interoperability between GIS and data 
sources. Ontologies that are conformant to such standards can be used as models for different GIS and 
data sources that deal with the same domain to increase their semantic interoperability. In this paper, 
the data source for the navigation services is GDF conformant while the services are OAS 
conformant. 
Wrappers are one way to aim for communication between services and data sources without semantic 
loss or errors. If services are implemented as a software system that commits to ontologies then the 
term Ontology-Driven Geographic Information System (ODGIS) is used (Fonseca et al. 2002). A 



wrapper that is ruled by external ontologies will be developed in this paper. It requires a knowledge 
base consisting of ontological axioms and their translations. The knowledge base includes semantic 
translations of each axiom that allow a well defined conversion from the data source into the 
properties of an implemented navigation service, which commits to an external ontology. 
Our main contribution is the practical development of a wrapper-based ODGIS that is designed for 
maximum reusability with the help of external ontologies. Other research investigated about general 
concepts how to develop a wrapper (Lu and Mylopoulos 2002; Thiran 1999; Zhang et al. 2000; 
Zaslavsky et al. 2000). This paper focuses on the design and implementation of one pragmatic 
example. Two standards are taken for the wrapping process, therefore wrapper reusability is 
important. This is achieved through external ontologies. 
 
REQUIREMENTS FOR THE NAVIGATION SERVICES 
A navigation service needs to calculate a route from a start to an end point. It depends on the service 
what kind of preferred path, e.g., shortest, most scenic (Golledge 1995), can be calculated. This paper 
deals with shortest paths. Guiding hikers and car drivers along these routes is done by the service 
route guidance. 
 
Route calculation 
Algorithms for calculating shortest paths are based on graphs consisting of nodes and valued edges. 
To avoid accidents like the one described, these basic geometries require additional attributes that 
define restrictions. A geometry with additional attributes is called a feature. In this paper, only line 
features are considered. Traffic networks and shortest routes are modelled as feature collections. In 
other words, routes are lists of line features. Every edge in a line feature includes two points. Traffic 
networks are split into layers. Here, a route can only be calculated in a layer that supports roads and 
ferries. The operation that a client sends to a server has the following signature: 
 
RouteCalculation :: LayerId -> StartPoint -> EndPoint  

-> FeatureCollection 
 
Route guidance 
This service receives the feature collection from route calculation as input and analyzes each edge 
that belongs to a feature. Every feature has a comment attribute where error codes and warnings were 
previously saved by the wrapper. The service route guidance guides the user feature by feature. 
Attribute values and error codes warn the user or give well defined orders how to behave. Street 
names and lengths of feature geometries are also added. Its operation has the following signature: 
 
RouteGuidance :: FeatureCollection -> ListOfInstructions 
 
ONTOLOGIES 
An ontology is an explicit specification of a conceptualisation (Gruber 1993). It describes concepts 
and relationships for the benefit of knowledge sharing and reuse. The practical use lies in 
commitments among members of communities to particular ontologies. Sharing the same ontologies 
makes them use equal vocabularies and definitions. If services and data sources commit to shared 
ontologies then semantic interoperability is possible. In this paper, ontologies for GDF and the 
OpenGIS® Simple Features Specification (SFS) are developed. The ontologies are described in the 
DARPA Agent Markup Language (DAML) (DARPA 2003). 
 
GDF Ontology 
The GDF standard was developed to describe as many geographic objects and relations between them 
as possible (ISO 2001). This paper deals with navigation services, therefore many details of the 
standard not necessary for routes are ignored. We consider Roads and Ferries. GDF offers three 
levels of representation. On Level-0, the basic graphical building blocks are defined. They are nodes, 



edges and faces, or alternatively, dots, polylines and polygons. Level-1 represents simple features 
such as Road Element, Junction and Ferry Connection. A Junction is a feature that bounds a Road 
Element or Ferry Connection. On Level-2, complex features are represented. We define elements 
from Level-0 and Level-1 in a DAML ontology. 
 
SFS Ontology 
Software engineers are enabled by OGC’s Abstract Specification to create and document conceptual 
models that are sufficient to create Implementation Specifications like the OpenGIS® Simple Features 
Specification (OGC 1999a,b). The specification of geometries is based on the ISO 19107 Spatial 
Schema (OGC 2001). Compared to GDF, OAS offers more possibilities to increase interoperability 
concerning modelling geometries. To define SFS geometries in an ontology, parts of the Geometry 
Class Hierarchy of the Geometry Object Model (OGC 1999a) are used. The final selection of 
metadata entities and elements to associate with each Feature and Feature Collection is left to each 
data producer or geospatial information community. This means that each software engineer is 
allowed to define individual feature attributes. Our ontology-based wrapper needs a SFS ontology, 
but if there exist individual feature definitions for each client then it is also necessary to define a 
feature ontology for each client. 
 
WRAPPER 
The task of a wrapper is to translate a request fragment from the mediator’s language to that of the 
information source and transform the results provided by the information source back to the 
mediator’s language. In this way, wrapping each information source into the translation software 
makes the protocol diversity of particular sources manageable (Zaslavsky et al. 2000). A mediator is 
designed to visit the distributed data servers automatically and gathers the metadata. These data are 
stored in the mediator’s Meta database (Zhang et al. 2000). 
Wrapping a system is the process of defining and restricting access to the system through an abstract 
interface. A wrapper for information services accepts queries in a given format, converts them into 
one or more commands or sub-queries understandable by the underlying information service and 
transforms the native results into a format understood by the application (Lu and Mylopoulos 2002). 
Constructing wrappers is a diverse process because the input/output descriptions depend on the level 
of abstraction and on the details of the descriptions. 
 
ODGIS ENGINEERING 
The need for a wrapper occurs when a service intends to use a new data source that commits to a 
different standard. Figure 1 demonstrates such a situation. 
 
System design 
The perfect way to wrap information as presented in Figure 1 would be that the source codes of the 
old services need to be only minimally altered. The geometry classes used here are specified by SFS 
and therefore, the interfaces, attributes and algorithms are clearly defined. Although different clients 
may use different implementations of these algorithms, the interfaces and operation results have to be 
equal. Therefore, the geometry classes of the different clients are treated equally because the 
individual implementations are not important for the wrapper itself. Feature collections and their 
features are not specified by SFS and therefore, the wrapper must cope with differing features. The 
wrapper must also deal with features in a most general way because a large number of applications 
may use the same wrapper for the same data source. This is one more important reason why the use of 
ontologies is a good solution. Defining the details for GDF, the Geometry Classes and the individual 
features as ontologies turns the wrapper into a general information translator. Such translator can 
handle an increasing set of information axioms, such as new GDF features, SFS classes and feature 
collections of new clients through an extension of the ontologies. The wrapper may only require the 
implementation of new DAML axioms that are needed for new information structures in the extended 
ontologies. 



The data sources may differ in their location, file format, etc. In this paper, the data source is the text 
file Havellnd.gdf of the record-based Tele Atlas MultiNet database. It is already modelled as GDF 
data. Data fields of the single records are specified in Tele Atlas NV (2001). Only those data relevant 
to the navigation services are analyzed. Warnings and error codes must also be defined in the 
knowledge base for cases of difficult or impossible wrapping. Finally, the knowledge base requires 
translation rules for all individual features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System architecture before and after introducing a wrapper. 
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Tasks of the wrapper 
The wrapper developed here executes several tasks that are independent from each other. Text files 
are first imported. The component OntologyFactory imports the ontology files and parses the DAML 
code. Here, an ontology comprises two sets of classes and properties. Points and line features are 
classes while identifiers, coordinates and feature attributes are properties. A class is a set of property 
restrictions. Each referenced property is set to a fixed single value or restricted by a cardinality. Using 
these classes, the OntologyFactory creates ontology classes that include equal information like it is 
defined by the DAML ontology. The wrapper receives these two implemented ontologies for the 
external GDF and SFS ontologies. After importing the knowledge base, the data source is read by 
ignoring those data records that do not fit to the requested themes Roads and Ferries. After that, the 
wrapper tries to translate the data. There are three types of rules available for this wrapper. The 
easiest type are single data fields that work for most feature attributes because their translation is 
clearly defined in a single line feature record. Impossible translation leads to a well-defined warning 
or error message that the internal feature attribute comment stores. As second type, finding route 
segment names requires moving through attribute records and finally text records to find the real 
name. This requires a more complex rule description and wrapper access implementation. Third, 
wrapping the geometry turns out to be most difficult because in addition to navigating through data 
records, classes also have to be created while continuing to move through the data records. Finally, 
the wrapper creates a layer with the wrapped data. 
 
Rules for a knowledge base 
Developing a knowledge base that fits the requirements of an ODGIS is very difficult. Semantic 
translation does not only require a data model. There must be definitions which objects and properties 
from one domain equal classes and properties of another domain. Furthermore, algorithms how to 
access and translate information are necessary. The more complex a request is, the more difficult this 
task is. The main question here is whether a wrapper-based ODGIS can be developed using a wrapper 
that has no detailed information about GDF and SFS at all in its source code. Any action must be 
indicated by external ontologies and external knowledge rules. After testing different approaches, it 
was necessary to define at least general rules that are considered to be reusable for other applications. 
This means rules are specified and at least the names of such rules and their basic notation must be 
known by the wrapper source code directly. Therefore, rules have the following structure: 

:Rule=name 
[sequence of axioms] 
:Rule end 
 
Every name of a rule is static and not allowed to be changed like the earlier described Single Data 
Fields. Knowledge rules must deliver enough information about where a wrapper can find data and 
how the data has to be used to receive the correct semantic translation. 
 
The wrapping process 
The wrapping process is described with the help of attributes that occur again in the use cases of the 
next section. Unique identifiers for features are being wrapped from the MultiNet file into attributes 
of RouteSegment features. In the knowledge base, the rule Single Data Fields includes the axiom: 
 
52:3:12#GDF:LIFEREC:LINE_ID#DrivingFeatureCollection:RouteSegment: 
featureId 
 
It is the easiest example for wrapping an attribute. The # signs subdivide the rule into three parts. 
First, it is defined where a GDF attribute is situated in the text file. A line feature has the record 
description code 52. These codes always appear as the first two characters of a record formatted as a 
string. In the MultiNet file, the data field of the line feature identifier begins at character 3 and ends 



at character 12. After extracting these 10 characters, part two is started. It describes the ontological 
axiom of the GDF ontology. The GDF name for the conformant record is LIFEREC and the suitable 
attribute name is LINE_ID. Now the wrapper can locate the attribute LINE_ID through the DAML 
class LIFEREC in the GDF ontology. It is defined as: 
 
<daml:DatatypeProperty rdf:ID="LINE_ID"> 
  <rdf:type rdf:resource="[…]/daml+oil#UniqueProperty"/>   
  <rdfs:range rdf:resource="[…]/XMLSchema#positiveInteger"/> 
</daml:DatatypeProperty> 
 
This simplified notation reveals the requirements for the identifier LINE_ID, which must be unique 
and have a value of at least 1. After converting the 10 characters into an integer, the restrictions must 
be evaluated. If the identifier already exists then the wrapper stops dealing with this record. If the type 
is incorrect then it must be decided whether the entire wrapping process stops or this record can be 
ignored. Here, a record is always simply ignored when an invalid identifier occurs. Finally, the last 
part of the wrapping process begins, namely the attribute is inserted into a SFS or feature class. In the 
ontology DrivingFeatureCollection, the DAML class RouteSegment is accessed by the wrapper to 
find the definition of featureId. It has the same structure as LINE_ID. Again, the restrictions are 
evaluated and after a successful test, the attribute value is taken to create an instance of the class 
RouteSegment with this value as featureId. The other attributes of the class are also translated. The 
next section explains two examples. 
 
TEST RESULTS 
The wrapper-based ODGIS from Figure 1 is implemented and tested with Java 2 SDK. After the 
server is launched, the wrapper imports the ontologies and knowledge base rules from text files and 
starts importing the data records from the MultiNet text file one by one. First, the nodes and edges 
for the geometry classes are imported and wrapped into Java geometry classes. Every client uses these 
geometry classes. Depending on the individually defined features, Line Feature Records and Attribute 
Records from GDF are wrapped into feature attributes. As a demonstration of the test results for 
wrapping individual features, two use cases, features for hiking and car navigation systems, are 
presented. A route made of line features is defined as a HikingFeatureCollection or 
DrivingFeatureCollection consisting of RouteSegments. One simplified possibility to describe the 
attributes of segment classes for both feature collections in Java notation is: 
 
// Hiking feature(data type; attribute name; attribute description) 
  double featureId;        // Identifier 
  string comment;          // Warnings and errors 
  double maxSlope;         // Maximum slope allowed in degree 
  double segmentLength;    // Length of line string 
  double segmentName;      // Name of line string 
  double zCoordStartPoint; // z-coordinate for start point 
  double zCoordEndPoint;   // z-coordinate for end point 
  LineString geometry;     // SFS geometry for this feature 
 
// Driving feature(data type; attribute name; attribute description) 
  double featureId;        // Identifier 
  string comment;          // Warnings and errors 
  int segmentType;         // Segment type: 0=Road; 1=Ferry 
  double segmentLength;    // Length of line string 
  double segmentName;      // Name of line string 
  LineString geometry;     // SFS geometry for this feature 
 



LineString is a SFS class that contains two spatial and linearly interpolated points. Wrapping into a 
RouteSegment for hiking services creates warnings and errors. A list of error and warning codes for 
difficult or wrong semantic translation results is defined in the knowledge base rule Comments. Codes 
and their descriptions are always written into the internal feature attribute comment. This enables the 
clients to decide how to deal with warnings and errors. No fixed definition exists whether a 
translation problem has to be evaluated as a warning or a critical semantic error. The following 
axioms of the rules Single Data Fields and Comments define the warnings and errors that occur 
during wrapping into a hiking RouteSegment: 
 
Critical single data fields: 
W1#0#HikingFeatureCollection:RouteSegment:maxSlope 
E1#0#HikingFeatureCollection:RouteSegment:segmentLength 
W2#0#HikingFeatureCollection:RouteSegment:zCoordStartPoint 
W3#0#HikingFeatureCollection:RouteSegment:zCoordEndPoint 
 
Warnings: 
W1:MaxSlope does not exist in MultiNet GDF 3.0 data. 
W2:Z coordinates for start points are not available in MultiNet GDF 
   3.0 data. 
W3:Z coordinates for end points are not available in MultiNet GDF 
   3.0 data. 
 
Error: 
E1:Semantic error occurs if SFS-defined method for 2-dimensional 
   segment length is performed for 3D-points (z coordinates <> 0). 
 
The values for maximum slope allowed help the route calculation service to express whether the real 
slope of a line string is higher than allowed to be part of a suitable hiking route. But this value is 
neither represented in GDF nor can it be calculated. Slopes require the z-coordinates of points, which 
are not defined in SFS. Although the z-coordinates exist in GDF, the SFS method get_Length within 
the geometry classes only accesses x- and y-coordinates. Therefore, get_Length calculates the 
distance between two points in two dimensions only. This leads to different results compared to the 
real-world distances if z-coordinate values differ. The MultiNet text file does not include values for 
z-coordinates (although they are specified in GDF) and therefore the results for get_Length are equal 
by chance, because undefined coordinate values are assigned to 0 by default. When all z-coordinates 
are 0 as it is the case for the used MultiNet file then such data are practically not useful for hiking 
routes. 
The RouteSegment for driving features is an example for a correct semantic translation. A warning is 
expressed because the segment length does not belong to GDF, but the geometry classes include the 
method get_Length, which returns the correct length of the segment. The following axioms define the 
segment type of a route segment as case sensitive Single Data Fields:  
 
52:18:21#GDF:LIFEREC:FEAT_CODE(4110)#DrivingFeatureCollection:     
   RouteSegment:segmentType(0) 
52:18:21#GDF:LIFEREC:FEAT_CODE(4130)#DrivingFeatureCollection: 
   RouteSegment:segmentType(1) 
 
Wrapping the feature code (FEAT_CODE in GDF) into the segment type (segmentType) defines 
whether a route segment is a road element (code 4110  code 0) or a ferry connection (code 4130  
code 1). This value transformation is based on simplified DAML axioms taken from the GDF 
ontology and the DrivingFeatureCollection ontology: 
 
 



<daml:DatatypeProperty rdf:ID="FEAT_CODE"> 
  <rdfs:comment> 
    FEAT_CODE belongs to the GDF record LIFEREC. 
  </rdfs:comment> 
  <rdfs:range rdf:resource="[…]/XMLSchema#nonNegativeInteger"/> 
  <daml:oneOf rdf:parseType="daml:collection"> 
    <FEAT_CODE rdf:ID=4110/> 
    <FEAT_CODE rdf:ID=4130/> 
  </daml:oneOf> 
</daml:DatatypeProperty> 
 
<daml:DatatypeProperty rdf:ID="segmentType"> 
  <rdfs:comment> 
    segmentType is an attribute of the feature RouteSegment. 
  </rdfs:comment> 
  <rdfs:range rdf:resource="[…]/XMLSchema#nonNegativeInteger"/> 
  <daml:oneOf rdf:parseType="daml:collection"> 
    <segmentType rdf:ID=0/> 
    <segmentType rdf:ID=1/> 
  </daml:oneOf> 
</daml:DatatypeProperty> 
 

 
Figure 2:  OdRoutes GUI showing instructions based on a hiker ontology. 



The implemented ODGIS is named OdRoutes that stands for “Ontology-driven Routes”. Figure 2 
shows the results after executing both navigation services for the hiker ontology. Locations can be 
selected as spatial points or street names. The instructions include the warning and error messages as 
well as calculated values for slopes and lengths of route segments. Referring to the car accident, the 
hiker ontology could not avoid such an accident if a car driver would follow these hiking instructions 
because the 1.9-km-long route segment is a ferry connection in reality. 
 

 
Figure 3: OdRoutes GUI showing instructions based on a driver ontology. 

 
Figure 3 presents the instructions based on the driver ontology. This time, the ferry connection is 
identified and the driver is correctly instructed. 
But there is a big problem in extending this wrapper’s abilities. Implementing to find a segment name 
was already chaotic because it seems that an algorithm is difficult to develop. Therefore, the first 
approach was to implement rules and Java codes completely iterative. This caused long Java code 
hoping to discover a strategy how to find the required information. But although many Java command 
sequences reappear again and again, there is often a small difference so a general algorithm does not 
seem to exist. When the wrapping process of translating a line string geometry was finished, there 
was a huge and bad-to-read method with many logical switches. It was a question of time when one 
little switch would cause a wrong logic and ruin the entire wrapping process. Finally, such mistakes 
could be found but imagining to wrap complex features appears almost impossible. The dependency 
between knowledge base rules and basic algorithmic strategies for the wrapper is so strong that rules 
for complex features must turn into pseudo-code before a correct wrapping is possible. 



Solving this implementation problem raised the idea that it was a wrong decision to focus on one 
pragmatic wrapping example. It appears possible to design and implement the wrapper on a more 
abstract level. Organising rules in hierarchies may clearly define the algorithms how data have to be 
connected to form semantically correct information. This could even abstract from spatial domains 
and enable the wrapper to translate information between two completely different domains that have 
just a few attributes in common. Marketing software in a business domain, for example, may require 
spatial points for a market analysis. An ODGIS may deliver wrapped spatial points then.  
 
CONCLUSIONS AND FUTURE WORK 
The ontology-based wrapper presented is a powerful way to cope with different GI-models that are 
supposed to be connected. The wrapper only needs to collect suitable knowledge and wrap the 
information automatically because detailed knowledge is “outsourced” into ontologies and a 
knowledge base. Other standards can easily be added by creating a new ontology. The practical 
justification for developing an ontology-based wrapper depends on the expense of alternative 
software designs and implementations with a static wrapper or no wrapper at all. Our ODGIS might 
be too small for justifying the creation of ontologies, a knowledge base and an entire wrapper, 
because the expense is much smaller with a few classes that simply access the data source directly. 
For complex systems though, ontology-based wrappers should practically be a reusable standard 
software that could be adapted for different applications. The less ontological axioms are standardized 
such as the features in SFS, the more work it is to create individual ontologies and knowledge base 
rules for each client. From this point of view, an ontology-based wrapper is an indicator that shows 
how semantically interoperable a model or standard is. The more individual ontologies and rules must 
be created, the less semantically interoperable a model is. 
For future work, the usability of an ontology-based wrapper could be increased by developing more 
wrapper intelligence and implementing entire standards as ontologies. The prototype described here 
reacts to static axioms and understands only a small part of the mentioned standards. It is a problem 
that the expense for developing and implementing ontology-based wrappers for SFS conformant 
services theoretically increases endlessly, because attributes for features are not standardized. 
Furthermore, it must be investigated how the shown problem with features relates to problems with 
other SFS classes. It is necessary to develop one specification that defines all allowed interfaces, 
algorithms, attributes and their restrictions. Uniting all advantages of GDF and SFS would result in a 
reusable and interoperable standard. But the larger the ontologies become, the longer the wrapping 
process will take. Therefore, the runtime behaviour of such ontology-based wrappers may turn into an 
important topic. This also includes the choice of development software like the implementation 
language as there are much faster languages than Java. 
Referring to the test results, a new version of this wrapper should be abstracted from spatial contents. 
A general ontology-driven wrapper is much more reusable by applications from any domain. Such a 
new version requires redesigning the wrapper and knowledge bases. Knowledge bases may also be 
defined as DAML ontologies. 
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