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Abstract. Semantics constitutes the highest level on the communication ladder. The 
mutual understanding of terms makes it possible that information systems can com-
municate with people and among each other. Two opposing approaches to explain-
ing the meaning of terms exist: a realist and a cognitive one. Many efforts for solv-
ing the so-called problem of semantic interoperability in the area of Information 
Science are based on realist semantics, which claims that meaning is in the world. In 
this paper we argue for a cognitive approach to semantic interoperability, which is 
based on the assumption that meanings are in the heads of people. This allows us to 
account for the fact that different people have different conceptualizations of the 
world and therefore require different answers and presentations of answers to their 
spatio-temporal questions. The paper presents a formal approach for representing 
Gärdenfors’ idea of conceptual spaces—sets of quality dimensions within a geomet-
rical structure. It complements the mathematical notion of a vector space with a 
standardization method from statistics to formally define conceptual vector spaces. 
Such spaces allow for the measurement of semantic distances between instances of 
concepts and also for the assignment of weights to their quality dimensions in order 
to represent different contexts. Mappings, such as transformations and projections, 
between such spaces facilitate knowledge sharing and therefore support cognitive 
semantic interoperability. A case study from the geospatial domain—wayfinding 
services with landmarks—demonstrates the usefulness and plausibility of the ap-
proach. 

 
 

Introduction 

Communication or the activity of conveying information depends on semantics, i.e., the 
meanings of words in a language1. In previous times the exchange of information was be-
tween human beings, whereas now information gets additionally exchanged between vari-
ous computer (information) systems, and between such systems and human beings. In order 
to provide for a successful exchange of information in the sense that the content is under-
stood2 in an unambiguous and consistent way by different parties, their semantics needs to 
be defined and represented in a formal way. 

Two opposing approaches to explaining the meaning of terms exist: a realist and a 
cognitive one. Realist semantics asserts that the meanings of expressions are in the world 
and therefore independent of how individual people understand them. In cognitive seman-
tics, meanings are mental entities, i.e., mappings from expressions to conceptual structures, 
which themselves refer to the real world. It has been demonstrated that realist approaches 
to semantics face a number of difficulties, most notably their problems to deal with learn-
ing, with mentally constructed objects that have no direct correspondence in the real world, 

                                                 
1 We refer to language in a general sense including both natural and computer languages. 
2 This means human understanding and its metaphorical projection to computers. 



 

and with the fact that the meaning of concepts often changes both over time and between 
contexts [1]. 

When creating automated information services—services that work with each other 
without human intervention—it is often forgotten that the final goal is to create information 
for a human user. Therefore it is important how individual people understand the output of 
a computer system and that the computer system understands people’s meanings of terms 
used to formulate a question to the system. In this paper we present a formal method to rep-
resent conceptual spaces—sets of quality dimensions within a geometrical structure—as 
proposed by Gärdenfors [1]. Computer-friendly representations in the area of cognitive se-
mantics are rare but urgently needed. They allow us to account for the fact that different 
people have different conceptualizations of the world and therefore require different pres-
entations of answers to their spatio-temporal queries. The concepts of system designers 
have to be matched with the concepts of individual users to make communication a suc-
cessful enterprise. 

The way of formalizing conceptual spaces presented here utilizes the mathematical 
theory of vector spaces in combination with a method from statistics. Concepts that are rep-
resented through conceptual spaces are usually built by combining different domains. For 
example, one’s concept of a building may combine the domains of size, shape, and color. A 
concept is represented as an n-dimensional conceptual vector space, whose axes represent 
quality dimensions or further vector spaces denoting domains. In order to standardize the 
variables represented by these axes a statistical method called z-transformation is applied 
[2, 3]. This allows for representing instances of a concept (i.e., individuals) as points in the 
conceptual vector space and measure the distances between them and their distances to a 
prototype of the concept. Such prototype is ideally an n-dimensional region in the concep-
tual space [1]. In addition, one can account for the use of a concept in different contexts by 
assigning different weights to the axes of the conceptual vector space. 

Formal conceptual spaces can be exploited for the matching of concepts between par-
ties of a communication process, e.g., for the communication between a computer system 
and a user. A particular concept used by the system is represented through a conceptual 
space (i.e., the designer’s) and the same concept is represented through the user’s concep-
tual space. Both spaces can then be compared—for example, by representing one’s proto-
type within the other space and determining the distance between the prototypes—and ad-
justed to each other. For practical reasons, the system adapts the semantics of its concepts 
to the user’s semantics, leading to improved human-computer interaction. In order to dem-
onstrate how the formalization of conceptual spaces works in practice we use a case where 
a navigation service gives instructions to a wayfinder. These instructions include facades of 
buildings as landmarks [4]. The concept of ‘facade’ is represented in two conceptual 
spaces, both from the system’s and the user’s perspective. 

 
 

1 Cognitive Semantics and Conceptual Spaces 
 
Cognitive semantics claims that the meanings of terms are in people’s heads. As such, 
meanings are mappings to conceptual structures, which themselves refer to real-world enti-
ties. Cognitive semantics tries to give answers to many of the problems a realist semantics 
account of reality faces, such as explaining processes of learning and the construction of 
mental objects that do not correspond to real-world features. The realist approach to seman-
tics assumes that meaning consists only of relationships between abstract symbols and ele-



 

ments in real-world models3. Therefore, correct reasoning is achieved by logical manipula-
tion of such symbols and elements. This point of view lacks a place for people, because ac-
cording to realist semantics the world stays the same, whether there are people in it or not 
[5]. But information systems, which can interact with their users in a comprehensible way, 
require different mental knowledge representations of different users [6]. As Rosch puts it: 
“It should be emphasized that we are talking about a perceived world and not a metaphysi-
cal world without a knower” [7, p.29]. 

Lakoff [5] argues that people use cognitive models in trying to understand the world. 
He stands behind the experientialist view, which claims that reason is made possible by the 
body. Language makes use of our cognitive system and we organize our knowledge by 
means of structures. Structure plays an important role in cognitive semantics [8]. The basic 
conceptual units of cognitive semantics are internally structured and there exist meaningful 
relationships between their components. Prime examples for such a conceptual unit are im-
age schemata—recurring mental patterns that help people to comprehend and structure 
their daily experiences [9]. An image schema can be seen as a very generic, maybe even 
universal, and abstract structure that helps people establish a connection between different 
experiences that have this same recurring structure in common. The internal structures of 
these units make it possible to establish mappings across conceptual models and therefore 
between domains, e.g., metaphors [10] and blended spaces [11]4. Such mappings belong to 
the distinguished capabilities of human cognition with regard to establishing and communi-
cating meaning [13]. 

Gärdenfors [1] argues that cognitive science needs three levels, i.e., the symbolic, the 
conceptual, and the subconceptual level. His major endeavor is the explanation of the con-
ceptual level, which consists of conceptual spaces. According to Gärdenfors, a conceptual 
space is a set of quality dimensions with a geometrical or topological structure for one or 
more domains. A domain is represented through a set of integral dimensions, which are dis-
tinguishable from all other dimensions. For example, the color domain is formed through 
the dimensions hue, saturation, and brightness. On the conceptual level, learning corre-
sponds to the extension of a conceptual space by new quality dimensions. Every object is 
represented as a point in a conceptual space. The similarity of two objects can therefore be 
expressed as the distance between their points in the conceptual space. 

Our meanings of concepts can change over time and they vary depending on the con-
text in which they are used. Conceptual spaces are capable of representing such dynamic 
aspects by giving different saliencies to dimensions and domains [1]. So far, only a few at-
tempts to formalize elements of cognitive semantics have been made. For example, some 
formal representations of image schemata exist [14-17]. There is a need for formalized con-
ceptual spaces so that they can be implemented in order to facilitate knowledge sharing [1] 
and communication between computer systems, and between systems and their users. A 
general formulation of conceptual spaces can be found in [18]. There, conceptual spaces are 
represented as pointed metric spaces, which generalize the commonly used vector spaces. 
In their conclusions, the authors argue that there has been cognitive support for the position 
that dimensions are quantitative and addition should be defined. This paper presents a pro-
posal in this direction by using vector spaces, which allow for addition and scalar multipli-
cation. 

 
 

                                                 
3 For the distinction between extensional realist semantics and intensional realist semantics, where terms 

are mapped to sets of possible worlds, see Gärdenfors [1]. 
4 A practical example for deriving the semantics of geographic categories through conceptual integra-

tion is given by Kuhn [12]. 



 

2 Formalization Methods 
 
This section describes the formal methods employed to formalize conceptual spaces and 
calculate distances between instances of concepts in them. 

 
 

2.1 Vector Space 
 
Vector spaces are of central importance for the mathematical subfield of linear algebra [19, 
20]. A vector space Rn consists of all column vectors with n components, where the com-
ponents are real numbers. For example, in R3 the three components give a point in three-
dimensional space. Within all vector spaces one can add any two vectors and multiply vec-
tors by scalars. Formally, a real vector space is a set of vectors with rules for vector addi-
tion and multiplication by real numbers, such as associativity, commutativity, etc.5. This 
formal definition also allows for vectors being matrices or functions [19]. 

An important instrument to investigate the structure of a vector space is the notion of 
linear independence. The vectors v1, …, vn are linearly independent, if all nontrivial com-
binations of the vectors are nonzero, i.e., c1v1 + … + cnvn ≠ 0 unless c1 = … = cn = 0. For 
example, in three-dimensional space three vectors are dependent if they lie in the same 
plane. Four vectors are always linearly dependent in R3. If a vector space consists of all lin-
ear combinations of the specific vectors w1, …, wn, then these vectors span the space. A 
basis for a vector space is a set of vectors, which is both linearly independent and spans the 
space. 

In n-dimensional vector space, the length of a vector can be calculated by n-1 applica-
tions of the Pythagoras formula, adding one more dimension at each step. The length of a 
vector in n dimensions is therefore |v|2 = v1

2 + v2
2 + … + vn

2. The inner product of two vec-
tors is used to test them for orthogonality. It is zero if and only if the vectors are orthogo-
nal: v * w = v1w1 + v2w2 + … + vnwn = 0. 

 
 

2.2 Standardization of Variables 
 
In order to calculate distances between instances of concepts in a conceptual space it is nec-
essary that all variables (i.e., quality dimensions) of the space are represented in the same 
relative unit of measurement. In addition, the relations between elements regarding the val-
ues of a variable need to be obtained. A method, which fulfills these requirements, is calcu-
lating the z scores for these values, also called z-transformation [3]. 

The z score of a particular observation in a data set is 

x

i
i s

xx
z

−
=  

where zi is the i-th value of the new variable Z, xi is the i-th value of the old variable X, x is 
the mean of X, and sx is the standard deviation of X. The standard deviation therefore func-
tions as the unit of measurement for describing the distances from the mean. It is positive or 
negative according to whether the original value lies above or below the mean. This trans-
formation is also referred to as standardization [2]. 
 
 
 
 

                                                 
5 The full list of rules can be found in Strang [19]. 



 

3 Formalization of a Conceptual Space 
 
In this section we describe how conceptual spaces can be formally represented as vector 
spaces. This allows for measuring semantic distances between instances of concepts and 
assigning weights to the dimensions of a space. Furthermore it is possible to define map-
pings between conceptual spaces. 
 
 
3.1 Conceptual Vector Space 
 
A conceptual vector space is defined as a set of vectors, each of which represents a particu-
lar quality dimension in the conceptual space. Ideally, these vectors form a basis of the 
space. In practice this is hard to achieve because for various domains not all dimensions are 
totally independent. For example, in the color domain, saturation and brightness influence 
each other [1]. If multi-domain concepts are represented in a conceptual space, then each 
quality dimension of the space can represent a whole domain, consisting of its quality di-
mensions. This way the conceptual vector space consists of a number of subspaces (and 
possibly subspaces of these, etc.). 

Formally, a conceptual vector space is defined as Cn = {(c1, c2, …, cn) | ci ∈  C} where 
the ci are the quality dimensions. If a quality dimension represents a domain, then the par-
ticular dimension cj = Dn = {(d1, d2, …, dn) | dk ∈  D} and so on. One can best visualize 
such hierarchical structure as a rooted tree [21] G = (V, E) with the distinguished vertex 
representing the conceptual space and all other vertices representing either single quality 
dimensions or domains as sets of quality dimensions. 

 
 
3.2 Distances and Weights 
 
The fact that vector spaces have a metric allows for the calculation of distances between 
points in the space. These points are specific instances of concepts represented as vectors 
vinst = (v1, v2, …, vn) where the v1 to vn are the components, i.e., the values for the quality 
dimensions of the conceptual space. We refer to the Euclidean distances between points as 
semantic distances between instances of the concept represented in the particular concep-
tual vector space. Calculating the semantic distance between two instances of a concept u 
and v involves the following steps: 

1. Calculation of z scores for components to get same relative unit of measurement:  
(u1, u2, …, un) → (z1

u, z2
u, …, zn

u), (v1, v2, …, vn) → (z1
v, z2

v, …, zn
v) 

2. Calculation of semantic distance between u and v: 
 |duv|2 = (z1

v - z1
u)2 + (z2

v - z2
u)2 + … + (zn

v - zn
u)2 

The definition of multiplication of vectors by real numbers in vector spaces makes it 
possible to assign weights to the individual quality dimensions. This is essential for the rep-
resentation of concepts as dynamical systems [22]. Meanings of concepts change over time 
and depending on the context in which they are used. In a conceptual vector space it is pos-
sible to account for these changes by adding or deleting quality dimensions and by assign-
ing different saliencies (as weights) to the existing dimensions. In this case Cn is defined as 
{(w1c1, w2c2, …, wncn) | ci ∈  C, wj ∈  W} where W is the set of real numbers. 
 
 
 
 
 



 

3.3 Mappings between Conceptual Vector Spaces 
 
Conceptual vector spaces can be utilized for defining the matching of concepts between 
communication parties and to translate the meanings of concepts between different infor-
mation communities [23]. This way they support the implementation of semantic reference 
systems [24, 25]. In order to do so it is necessary to define mappings between the spaces. 
Such mappings can either be transformations involving a major change in quality dimen-
sions, e.g., addition of new dimensions, or projections reducing the complexity of a space 
by reducing its number of dimensions. Most mappings will lead to a loss of information. 

Formally, such partial mappings are defined through mapping functions between com-
ponents (R: Cm → Cn). The impact of this definition is that for any given component cm ∈  
Cm, either there are no pairs (cm, cn) ∈  R or there is only one such pair [21]. 
 
 
4 Case Study: Wayfinding Service with Landmarks 
 
In this section we apply the formal methods to the case of a wayfinding service. This ser-
vice offers facades of buildings as landmarks. The concept ‘facade’ is represented in a con-
ceptual vector space, both from a system and a user perspective. It is further shown how the 
assignment of weights for the quality dimensions of ‘facade’ can be used to represent dif-
ferent contexts and how a simple mapping between system and user spaces can be per-
formed. 
 
 
4.1 Scenario 
 
A wayfinding service communicating route instructions to its users serves as the case study 
to demonstrate the applicability and usefulness of conceptual vector spaces in a real-world 
scenario. The service automatically extracts salient features from datasets und uses these 
landmarks to enrich wayfinding instructions [4, 26]. The model of landmark saliency is 
based on three categories of attraction measures—visual, semantic, and structural. A par-
ticular wayfinding task in the city of Vienna had been used to apply the model and derive 
wayfinding instructions. Subsequent work included human subject tests to prove its cogni-
tive plausibility [27]. 

  The model has been applied to a limited case, i.e., pedestrians in a dense urban envi-
ronment traveling in day-light and using facades of buildings as landmarks. The concept of 
‘facade’ was represented by different variables, such as area, shape, and color. This repre-
sents essentially the system view. By extracting facades as landmarks based on these quali-
ties and including them in wayfinding instructions for users, it is assumed that the system’s 
concept of ‘facade’ equals the individual user’s concept of ‘facade’. This is most often not 
true. In the following we demonstrate how conceptual vector spaces can capture the differ-
ences between a system’s view and a user’s view of the same concept. 

 
 
4.2 Conceptual Vector Space for ‘Facade’ 
 
In order to represent the concept ‘facade’ in the conceptual spaces of both the system and 
the user, one first needs to define their quality dimensions. For the system view we take the 
original variables as used in [26]: facade area, shape factor, shape deviation, facade color 
on the RGB scale, visibility, cultural importance, and identifiability by signs. The dimen-
sions for the user view are changed in two ways: First, it has been demonstrated that the 



 

metric of the RGB color space is usually different from the perceived metric [28], therefore 
a color model based on perception—the HSB (Hue, Saturation, Brightness) model, also 
called Natural Color System (NCS)—is used. Second, cultural importance is not taken into 
account as a quality dimension for the user concept because the fact that a building was de-
signed by a famous architect is relevant for monumental protection but usually not recog-
nizable by the average user of a wayfinding service. 

Formally, the conceptual vector spaces for ‘facade’ can then be defined as Cn
system and 

Cn
user:  

• C7
system

 = {(c1, c2, …, c7) | ci ∈  C} where  
c1-c3 correspond to the quality dimensions facade area, shape factor, and shape 
deviation; 
c4 represents the color domain with RGB metric—c4 = D3 = {(d1, d2, d3) | di ∈  
D} with d1-d3 being the quality dimensions red, green, and blue; 
c5-c7 correspond to the quality dimensions visibility, cultural importance, and 
identifiability by signs; 

• C6
user

 = {(c1, c2, …, c6) | ci ∈  C} where 
c1-c3 correspond to the quality dimensions facade area, shape factor, and shape 
deviation; 
c4 represents the color domain with HSB metric—c4 = D3 = {(d1, d2, d3) | di ∈  
D} with d1-d3 being the quality dimensions hue, saturation, and brightness; 
c5-c6 correspond to the quality dimensions visibility and identifiability by signs; 

We can now represent individual facades, i.e., instances of the concept, as points6 in 
these conceptual vector spaces. For illustration purposes we present these instances for a 
particular moment in the wayfinding task, i.e., the intersection Graben / Dorotheergasse in 
Vienna (Figure 1). Table 1 gives the z scores for the quality dimensions of the system space 
and table 2 shows the values for the user space. The original measured values for the qual-
ity dimensions were taken from [26]. Standardization was necessary because of the differ-
ent units, such as square meters or percentages. 

 
Figure 1: A 360° view of the intersection Graben / Dorotheergasse in Vienna. 

 
In addition, the tables represent a point with id 0, which is an approximation to the pro-

totypical facade region. This prototype is represented through the mean values of all quality 
dimensions for all facades considered. It is based on Rosch’s structural theory of centrality, 
where prototypical members had been found to correspond to the means of attributes that 
have a metric [7]. 

Making the simplifying assumption that the quality dimensions are independent, it is 
now possible to measure semantic distances between all instances and the prototype. This 
way, the conceptual vector space can be used for identifying the most distinct facade, i.e., 
the one with the largest distance from the prototype. It is exactly this facade, which should 

                                                 
6 To be more precise: as vectors. 



 

be used as a landmark for the wayfinding instructions. By looking at the distances and 
ranking of most distinctive facades one can notice that the selection of particular facades as 
landmarks for a specific user depends heavily on the concept of ‘facade’. From the system's 
point of view facade 1 is the most distinctive and therefore chosen as the landmark at this 
intersection. From the user's perspective facade 2 is the best landmark. One of the reasons 
besides the differences regarding the color scale is the large semantic distance between fa-
cade 1 and the prototype with regard to cultural importance in the system space. In general, 
one can observe that the total ranking of facades differs widely between the two spaces. 

Table 1: Instances of ‘facade’ from system’s view at intersection Graben / Dorotheergasse. 

id z1
c z2

c z3
c z1

d z2
d z3

d z5
c z6

c z7
c dist rank 

1 -0.98 1.67 -0.38 -0.95 -0.84 -1.05 0.06 2.29 0.96 5.97 1 
2 -1.09 0.76 -0.38 0.53 0.61 0.76 1.19 -0.64 0.96 5.40 2 
3 0.33 -1.32 -0.38 -0.85 -0.79 -0.64 0.93 -0.64 0.96 4.25 6 
4 -0.26 -0.02 -0.38 0.40 0.34 0.26 -2.08 -0.64 -1.18 4.62 5 
5 0.53 -0.92 -0.38 2.02 2.09 2.09 -0.21 -0.64 0.96 5.28 4 
6 -0.19 -0.18 -0.38 0.27 -0.02 -0.20 -0.58 -0.64 -1.18 4.15 7 
7 -0.57 1.01 -0.38 -1.32 -1.34 -1.19 0.96 0.83 -1.18 5.33 3 
0 2.24 -0.99 2.65 -0.10 -0.05 -0.03 -0.28 0.09 -0.32 0.00 - 

Table 2: Instances of ‘facade’ from user’s view at intersection Graben / Dorotheergasse. 

id z1
c z2

c z3
c z1

d z2
d z3

d z5
c z6

c dist rank 
1 -0.98 1.67 -0.38 -0.02 -0.33 -0.61 0.06 0.96 6.72 2 
2 -1.09 0.76 -0.38 0.19 -0.37 0.71 1.19 0.96 7.12 1 
3 0.33 -1.32 -0.38 0.18 -0.25 -0.34 0.93 0.96 5.84 7 
4 -0.26 -0.02 -0.38 0.45 -0.44 0.32 -2.08 -1.18 6.62 5 
5 0.53 -0.92 -0.38 0.24 -0.47 1.70 -0.21 0.96 6.66 3 
6 -0.19 -0.18 -0.38 1.22 -0.46 -0.01 -0.58 -1.18 6.61 6 
7 -0.57 1.01 -0.38 0.24 -0.32 0.21 0.96 -1.18 6.65 4 
0 2.24 -0.99 2.65 -2.48 2.64 -1.99 -0.28 -0.32 0.00 - 

 
 
4.3 Representing Different Contexts 
 
People adapt their concepts to different decision situations. Prototypical regions in a con-
ceptual space can change depending on the context and task at hand. With respect to way-
finding it has been argued that people alter their behavior due to variations of context, such 
as mode of traveling, role of the traveler, and environmental conditions: people focalize 
because they are offered different affordances in different decision situations and environ-
ments [29-31]. Winter et al. [32] demonstrated that people select different landmarks dur-
ing wayfinding by day and night. Such variation of behavior can be modeled by assigning 
weights to the quality dimensions of a conceptual vector space. 

The following formal definitions of two conceptual vector spaces represent the user’s 
concept of ‘facade’ in the context of wayfinding by day and by night: 

• C6
user-day

 = {(w1dc1, w2dc2, …, w6dc6) | ci ∈  C, wjd ∈  W} 
• C6

user-night
 = {(w1nc1, w2nc2, …, w6nc6) | ci ∈  C, wjd ∈  W} 

The weights wid and win are assigned to the i-th quality dimensions for the day case and the 
night case. For calculation of the conceptual vector spaces these weights were taken from 



 

[32]7 and slightly modified to fit the quality dimensions used here, e.g., the weight for 
shape was split into subweights for shape factor and shape deviation. The weights are 
shown in table 3. 

Table 3: Weights for quality dimensions at day and night. 

 z1
c z2

c z3
c z1

d z2
d z3

d z5
c z6

c Σ 
wid (day) 0.11 0.08 0.07 0.12 0.12 0.12 0.26 0.12 1.00 

win (night) 0.26 0 0 0.07 0.07 0.07 0.23 0.30 1.00 
 
Table 4 gives the new values for the semantic distances and the ranking of facades for the 
intersection Graben / Dorotheergasse. These results are derived from the user’s conceptual 
vector space with the assigned weights for wayfinding at day and night. 

Table 4: Semantic distances and ranking of facades for intersection Graben / Dorotheergasse at day and 
night. 

id distday rankday distnight ranknight 
1 0.70 6 0.97 2 
2 0.84 1 1.06 1 
3 0.69 7 0.75 6 
4 0.83 2 0.88 4 
5 0.74 4 0.71 7 
6 0.73 5 0.78 5 
7 0.76 3 0.89 3 

 
One can observe the differences in values and the difference in ranking. Although facade 2 
is chosen as the best landmark in both contexts, the distance from the prototype is 26% lar-
ger for the context of night. One of the reasons is the already large distance for the quality 
dimension area, which gets more than doubled through the high weight at night. Facade 1, 
which was ranked only sixth during daylight gets moved up to rank two at night. This is 
due to much higher gains for the now higher weighted dimensions (area and identifiability 
by signs) than losses for the lower weighted dimensions (color and shape). 
 
 
4.4 Mapping from System to User Space 
 
In order to bridge the semantic gap between the system’s concepts and the user’s concepts 
it is necessary to define mappings between their conceptual spaces. This is illustrated by a 
simple projection from the system’s conceptual vector space for ‘facade’ to the user’s con-
ceptual vector space for ‘facade’ as defined in section 4.2. In this case the space gets re-
duced by one quality dimension (cultural importance) and the domain of color gets trans-
formed from RGB to HSB. Formally, we can define the partial mapping (R:  C7

system
 → 

C6
user) with the following mapping functions between components: (c1

s, c1
u), (c2

s, c2
u), (c3

s, 
c3

u), {(d1
s, d1

u), (d2
s, d2

u), (d3
s, d3

u)}, (c5
s, c5

u), (c7
s, c6

u). For the color transformation rules 
an established algorithm8 using color conversion formulas can be used. The use of such a 
mapping in our case study will ensure that the wayfinding instructions delivered by the ser-

                                                 
7 Weights were calculated from subjects’ scoring of facades through a regression approach with a robust 

estimator. 
8 See, for example, http://webtools.arisesoft.com/colorset/. 



 

vice will include landmarks according to the user's conceptualizations of ‘facade’. It is im-
portant to notice though that such transformations usually lead to losses of information or 
cannot be performed at all, i.e., when the necessary transformation rules cannot be identi-
fied or defined. 
  
 
5 Conclusions and Future Work 
 
This paper makes a contribution to formal representations of cognitive semantics. It de-
scribes a methodology to formalize conceptual spaces [1], which are sets of quality dimen-
sions with a geometrical structure. Such spaces can be utilized for knowledge representa-
tion and sharing, and support the paradigm that concepts are dynamical systems. Based on 
the theory of vector space and a statistical standardization method, we demonstrated how 
individual conceptual vector spaces can be formally represented and concept instances 
compared by measuring semantic distances to a prototype. A wayfinding service using the 
concept of ‘facade’ and real-world data were used as a case study. Furthermore, it was 
shown how individual quality dimensions of a conceptual space can be assigned weights to 
account for different contexts. In order to bring the system’s semantics closer to the user’s 
semantics, conceptual vector spaces can be mapped from one to another in the way of 
transformations and projections. 

The work leads to many directions for future research: 
1. We made the simplifying assumption that the quality dimensions of the conceptual 

spaces are independent. This is not always true. It will be necessary to investigate 
the covariances between dimensions and to account for these in the representations 
of the conceptual spaces. Human subject tests are a possible way to identify the 
quality dimensions for a concept and to infer their dependencies, which would lead 
to non-orthogonal axes in the representation. 

2. Prototypes are usually regions in the conceptual space. In this paper, the regions 
were approximated through points denoting the means of values for each dimen-
sion. Further work is necessary to identify the prototypical regions, which might 
best be represented by fuzzy boundaries. 

3. Mappings between conceptual vector spaces were defined as partial mappings. As a 
consequence, for every dimension in the source space there is either exactly one or 
no dimension in the target space. There are cases though, where quality dimensions 
of a concept are split into two or more dimensions, i.e., they are refined, which es-
sentially cannot be represented through functions. A possible approach into this di-
rection is information flow theory [33]. 

4. Several researchers have argued against a geometric approach for concept represen-
tation and similarity measurement for the reasons that the axioms of minimality, 
symmetry, and triangle inequality do not hold cognitively. With conceptual vector 
spaces it seems possible to account for these phenomena by assigning different 
weights depending on the context. In this way, dissimilarity of the same concept 
depending on the viewpoint and asymmetric semantic distances could be repre-
sented. The axiom of triangle inequality seems to be violated only when different 
contexts are mixed (e.g., geographical and political), such as in the example given 
by Tversky [34]. 
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