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Abstract. Navigation services communicate optimal routes to users by provid-
ing sequences of instructions for these routes. Each single instruction guides the 
wayfinder from one decision point to the next. The instructions are based on 
geometric data from the street network, which is typically the only dataset 
available. This paper addresses the question of enriching such wayfinding in-
structions with local landmarks. We propose measures to formally specify the 
landmark saliency of a feature. Values for these measures are subject to hy-
pothesis tests in order to define and extract landmarks from datasets. The ex-
tracted landmarks are then integrated in the wayfinding instructions. A concrete 
example from the city of Vienna demonstrates the applicability and usefulness 
of the method. 

1 Introduction 

Assume that you are spending a few days as a tourist in Vienna. You have just en-
joyed a cup of coffee in one of the traditional coffee houses, the Café Diglas, and you 
start thinking about dinner. Your tourist guide recommends one of the current in-
restaurants, Novelli. Unfortunately, what you get is only the address, not the best or 
any route from the Café Diglas to Novelli. This is a typical scenario for a navigation 
service, a special case of a location-based service. Calling the service should provide 
a route guide, delivered in real time and tailored for the user’s needs, in our case a pe-
destrian. 

Navigation services calculate an optimal route and provide a sequence of instruc-
tions for this route. Each single instruction guides the user from one decision point to 
the next. Typically, the instructions use geometric data from the street network, which 
is the only dataset available. This paper addresses the question of enriching such way-
finding instructions with landmarks. Research in spatial cognition has shown that 
people use landmarks during spatial reasoning and communication of routes, therefore 
this question is not only of theoretical but also of high practical importance. The main 
challenges are the automatic definition and extraction of appropriate salient features, 
i.e., landmarks, from the available datasets. Data providers offer so-called Points Of 
Interest (POI) geo-coded in spatial datasets. These POI are hard-coded and pre-



 

defined. A navigation service can use them or not; no method is provided to measure 
the attractiveness or relevance of a POI for being a landmark for a particular user in-
volved in a navigation task. 

The hypothesis of this paper is that a formal model of landmark saliency based on 
perceptual and cognitive concepts (i.e., vision and commonsense knowledge) allows 
for an automatic generation of route instructions, which include landmarks and are 
close to human communication. The goal is to improve existing navigation services 
by concepts closer to the human user, adaptive for individual users, with flexibility for 
different tasks. 

Section 2 gives an overview of human wayfinding and highlights the importance of 
landmarks for navigation. It further describes the components of wayfinding instruc-
tions and how they are used in a navigation service. In section 3 we present the prop-
erties of features used to measure their attractiveness as landmarks and describe data 
sources from which property values can be derived. Section 4 explains hypothesis 
testing as the method for defining and extracting landmarks from datasets and com-
bines the individual properties to form a global formal measure of landmark saliency 
for a feature. A case study in section 5 is used to demonstrate the proposed method. 
The final section gives conclusions and directions for future work. 

2 Wayfinding, Navigation, and Landmarks 

2.1 Human Wayfinding 

Human wayfinding research investigates the processes that take place when people 
orient themselves and navigate through space. Theories try to explain how people find 
their ways in the physical world, what people need to find their ways, how they com-
municate directions, and how people’s verbal and visual abilities influence wayfind-
ing. Allen [1] and Golledge [9] describe wayfinding behavior as purposeful, directed, 
and motivated movement from an origin to a specific distant destination, which can-
not be directly perceived by the traveler. Such behavior involves interactions between 
the traveler and the environment. Human wayfinding takes place in large-scale spaces 
([6], [14]). Such spaces cannot be perceived from a single viewpoint therefore people 
have to navigate through large-scale spaces to experience them. Examples for large-
scale spaces are landscapes, cities, and buildings. 

People use various spatial, cognitive, and behavioral abilities to find their ways. 
These abilities are a necessary prerequisite to use environmental information or repre-
sentations of spatial knowledge about the environment. The spatial abilities are task-
dependent and seem to involve mainly four interactive resources: perceptual capabili-
ties, information-processing capabilities, previously acquired knowledge, and motor 
capabilities [1]. As for the spatial abilities, the cognitive abilities also depend on the 
task at hand. Finding one’s way in a city uses a different set of cognitive abilities than 
navigating in a building. 

Allen [1] distinguishes between three categories of wayfinding tasks: travel with 
the goal of reaching a familiar destination, exploratory travel with the goal of return-
ing to a familiar point of origin, and travel with the goal of reaching a novel destina-
tion. A task within the last category, which is also the focus in this paper, is most of-
ten performed through the use of symbolic information. Here, we concentrate on 

 



landmark-based piloting where success depends on the recognition of landmarks and 
the correct execution of the associated wayfinding instructions. 

2.2 Landmarks and Navigation 

Among the different meanings of landmark is that of an object or structure that marks 
a locality and is used as a point of reference [21]. The concept is bound to the promi-
nence or distinctiveness of a feature in a large-scale environment or landscape ([10], 
[7]). Thus the landmark saliency of a feature does not depend on its individual attrib-
utes but on the distinction to attributes of close features. Being a landmark is a rela-
tive property.  

Landmarks are used in mental representations of space [28] and in the communica-
tion of route directions ([31], [19], [17]). Route directions shall provide a ‘set of pro-
cedures and descriptions that allow someone using them to build an advance model of 
the environment to be traversed’ ([23], p. 293). Landmarks support the building of a 
mental representation of such an advance model. Studies show that landmarks are se-
lected for route directions preferably at decision points ([12], [23]). Another study has 
shown that mapped routes enriched with landmarks at decision points lead to better 
guidance, or less wayfinding errors, than routes without landmarks. Furthermore, dif-
ferent methods of landmark presentations were equally effective [4].  

Lovelace et al. [17] distinguish between landmarks at decision points (where a re-
orientation is needed), at potential decision points (where a re-orientation would be 
possible, but should not be done to follow the current route), route marks (confirming 
to be on the right way), and distant landmarks. According to [18], distant landmarks 
are only used in navigation by a novice for overall guidance. We call landmarks at 
decision points and route marks the local landmarks with respect to a specific route. 

Lynch [18] defines landmarks as external points of reference—points that are not 
part of a route like the nodes in a travel network. He characterizes the quality of a 
landmark by its singularity, where singularity is bound to a clear form, contrast to the 
background, and a prominent location. The principal factor is the figure-background 
contrast ([32], [22]). The contrast can be produced by any property, such as unique-
ness in form or function in the local or global neighborhood. Sorrows and Hirtle [29] 
categorize landmarks into visual (visual contrast), structural (prominent location), and 
cognitive (use, meaning) ones, depending on their dominant individual quality. A 
landmark will be stronger the more qualities it possesses. 

However, a formal measure for the landmark saliency of an object is still missing. 
Research is done in mainly two directions: the investigation of what objects are se-
lected as landmarks in human route directions ([5], [23]) and the test of the success of 
pre-selected landmarks ([4], [8]). Little research is concerned with the identification 
of salient characteristics for the choice of landmarks for a route, as for instance in the 
context of car navigation by Burnett ([2], [3]). This issue is investigated more in the 
domain of robotics. Robots use automatic selection of landmarks for their self-
orientation and positioning. Landmarks in this context are merely feature details, such 
as vertical lines, rather than features ([33], [16]). Such concepts do not seem appro-
priate for supporting human wayfinding. 

Progress in telecommunication technology allows the enrichment of environments 
with beacons that can act as active landmarks by attracting nearby mobile devices 
[26]. Such landmarks are not perceived directly by humans but through their interac-



 

tion with software. Hence, active landmarks—although they can play a role in naviga-
tion—cannot be used as a reference for human users. Also, virtual landmarks, like vir-
tual information towers embedded in a model of the real world [24] cannot serve as 
reference points for human wayfinders, because they have no physical counterpart. 

2.3 Wayfinding Instructions 

The basic assumption of this paper is that route directions enriched by local land-
marks are easier to understand than the ones, which are only direction- and distance 
based. We propose the following formal model for the test of this assumption.  

• A route consists of a sequence of nodes and edges. 
• At nodes, the traveler needs information whether she shall continue moving in the 

present direction, or turn. Hence, nodes are called decision points in this model. 
One can distinguish between nodes where a re-orientation has to take place and 
other nodes where re-orientation is not necessary. 

• Orientation and re-orientation shall be referenced to:  
o Landmarks as anchors. This means we need at least one landmark at each deci-

sion point. If there are more, context-dependent selection criteria need to be ap-
plied to find the best one (direction of view, means of traveling, time of day). 

o Egocentric cardinal orientations (front, back, left, right), assuming the orienta-
tion of the present direction.  

• Along edges no orientation action needs to take place. The traveler shall move 
from the start node to the end node, i.e., from decision point to decision point.  

• Optionally, landmarks along edges (route marks) can be used to confirm to the 
traveler that she is on the right track.  

With these elements a general form of directions is the following (‘[]’ denoting re-
quired elements, ‘{}’ optional elements, ‘UPPER CASE’ language elements, and 
‘lowercase’ variables): 
[AT landmarki] +  
[TURN LEFT | RIGHT | MOVE STRAIGHT] +  
{ONTO street name} +  
{(PASSING | CROSSING) landmarkj}0…n +  
[UNTIL landmarkk]. 

with i≠j≠k. There shall be no reference to distance information or cardinal directions. 
Such survey information might nevertheless be useful for wayfinders and can easily 
be integrated if needed. All that is left now is the automatic extraction of suitable 
landmarks for use in these route directions. 

3 Measures for the Attractiveness of Landmarks 

The main contribution of this paper is a formal model of landmark saliency, which in-
cludes measures for the attractiveness of landmarks. In order to determine whether a 
feature qualifies as an attractive landmark we specify properties, which determine the 
strength of a landmark. In this section we identify such measures by taking into ac-

 



count the three types of landmarks as proposed by Sorrows and Hirtle [29]. Following 
their framework we presume that the visual, semantic, and structural attraction of fea-
tures in geographic space determine their use as landmarks in human spatial reasoning 
and communication. The final part of the section describes the necessary data sources 
from which to derive values for the measures. 

3.1 Visual Attraction 

Landmarks qualify as visually attractive if they have certain visual characteristics 
such as a sharp contrast with their surroundings or a prominent spatial location. Our 
formal model of landmark saliency includes four measures regarding visual attraction: 
Façade area, shape, color, and visibility. Table 1 shows the individual properties for 
visual attraction of an object, gives an example for each kind, and describes how these 
properties are measured. We propose to apply a statistical measure, i.e., a hypothesis 
test (see 4.1), to find out whether the values of these properties are significantly dif-
ferent to objects in the local area, e.g., along the same street segment. 

Façade Area. The façade area of an object is an important property for determining 
its contrast to surrounding objects. People tend to easily notice objects whose façade 
areas significantly exceed or fall below the façade areas of surrounding objects. In the 
trivial case of a regularly shaped building (of rectangular form) the façade area is 
calculated by multiplying its width and height. 

Shape. Visual attraction of an object is also determined by its shape. Unorthodox 
shapes amidst conventional rectangle-like shapes strike one’s eyes. We formally 
specify the shape measure of an object by considering its shape factor and also the 
deviation of its shape from that of a rectangle. The shape factor represents the 
proportion of height and width. For example, skyscrapers have a high shape factor, 
whereas long and low buildings have a low shape factor. The value of deviation is the 
difference between the area of the minimum-bounding rectangle of the object’s façade 
and its façade area. Notice that the value of deviation is not unique: Although two 
objects are of different shape they can have the same value of deviation. 

Color. An object can stand out from surrounding objects based on its color. For 
example, imagine a red fire department building in the midst of a set of gray 
buildings. We appoint a color value to each object by assigning decimal values from 
the RGB color chart and then determine whether this color is different from the colors 
of surrounding objects. 

In principle, color is a property difficult to measure and compare. Perceived light is 
a complex function of illumination, reflectance/absorption on surfaces, and receptive 
abilities of the visual sense. As Mallot [20] states, it makes no sense to define a metric 
in a color space, having no single basic color space. However, in the given context 
one can reasonably argue for a white and not too specific illumination (daylight). If 
the images are taken in diffuse daylight, color should be roughly comparable. In a 
first approach, the color of a building can be measured globally (mean or median), by 
a single [R,G,B] triple. A refined approach needs high-level knowledge for image in-
terpretation to select segments of the background color of a building for measurement. 



 

Given a triple for all buildings in the neighborhood, a mean color can be estimated, 
and distances (L2 norm) from the mean can be calculated for the hypothesis test. 

Visibility. The final property to be measured is the prominence of spatial location. 
We propose to measure this property by calculating two-dimensional visibility. 
Visibility is considered for the space used in the actual mobility mode—for 
pedestrians this is the public street space plus some private areas. It is assumed that 
visibility is limited by recognizability, for which reason a pre-defined buffer zone 
limits the considered space (and reduces computational complexity). The value of 
visibility is then derived from the area of the space covered by the visibility cone of 
the front side of a built object (Figure 1), which can then be ordered for the whole set 
of objects within a street segment. 

 

Fig. 1. Example for visibility area for ‘Singerstrasse 1’ within buffer zone (100m). 

Other Visual Properties. Other properties of an object, such as its texture and 
condition, may also influence the contrast to surrounding objects. The reasons for not 
including them in our formal model are their subjectivity and lack of formality. The 
texture of an object is often hard to identify, both from databases and in the real 
world. The condition of an object refers to its age and cleanliness. Age is easy to 
determine from a database, but often very hard to guess in the real world. For 
example, a building may be very old but due to a recent renovation looks new. 
Cleanliness is a subjective measure and therefore hard to specify within formal terms. 

Although these properties can be measured objectively according to the specified 
rules and criteria, their actual perception by wayfinders is influenced by temporal 
constraints. For example, it can be hard to detect the color of a building at night (on 
the other hand brightly illuminated buildings are very prominent at night) and the 
visibility of a landmark decreases dramatically on a foggy day. 

 



Table 1. Properties for visual attraction and how they are measured. 

Properties for visual at-
traction 

Example Measurement 

Façade area α = 25m * 15m =  
375sqm ∫ ∈= facadexx |α  

Shape  
• Shape factor 
• Shape deviation from 

rectangle 

 
β1 = 15m / 25m = 0.6 
β2 = 375sqm – 
295sqm = 21% 

 
β1 = height / width 
β2 = (area of minimum 
bounding rectangle – α) /  
area of minimum bound-
ing rectangle 

Color  γ = [255, 0, 0] = red γ = [R, G, B] 
Visibility δ = 2400 sqm visibleyx∑= |δ  

3.2 Semantic Attraction 

Our notion of semantic attraction is similar to that of cognitive attraction [29], which 
focuses on the meaning of a feature. Semantic measures for the formal model of 
landmark saliency comprise cultural and historical importance of an object, and ex-
plicit marks. The properties for semantic attraction, typical examples, and how these 
properties are measured can be seen in Table 2. 

Cultural and Historical Importance. Semantic attraction can result from the cultural 
and historical importance of an object. For example, the ‘Looshaus’ in the first district 
of Vienna is famous for its architectural style (Art Nouveau). This property can be 
deduced from a database including cultural and historical objects. For the City of 
Vienna such information is available from the so-called ‘Kulturgüterkataster’—a 
database of cultural, archeological, and architectural treasures1. This database also 
includes pictures of the objects. Here, we assign a Boolean value to each object: 
‘True’ if it is of cultural or historical importance and ‘False’ otherwise. One could 
refine this assignment by using a classification system similar to the ones of travel 
guides for important sites. There, the cultural and historical importance of objects is 
often measured on a predefined scale, e.g., from 1 to 5. 

Explicit Marks. Marks such as signs on the front of a building explicitly specify its 
semantics to the wayfinder. For example, a street sign gives information on what 
street the building is located. If a building is marked as ‘coffee house X’ or ‘museum 
Y’ then we can also know something about it, which cannot be inferred from its other 
visual properties. From the point of view of the provider offering a service with 
wayfinding instructions, the commercial semantics of buildings (which is most often 
highlighted by explicit marks such as the sign of a supermarket), can be easily 
extracted from the yellow pages of the area. An object with an explicit mark is 

                                                           
1 http://service.magwien.gv.at/kulturkat/ 



 

assigned the Boolean value ‘True’ whereas objects without explicit marks have the 
value ‘False.’ 

Other Semantic Properties. Other measures for semantic attraction, which are not 
included in our formal model, are prototypicality and implicit semantics. A 
prototypical object is easy to recognize. For example, St. Stephen’s dome in Vienna is 
regarded as a prototypical example for a church, whereas a modern church without a 
steeple is not considered prototypical. Although categories and prototype effects have 
been widely studied among psychologists and linguists ([27], [15]), extensive human 
subjects testing concerning the prototypicality of objects along a given route would be 
necessary to derive useful results, which could then be implemented in a database. 

In the real world, people derive the meaning of an object from either implicit or 
explicit semantics. For example, by looking through the windows of a building one 
might detect people sitting at tables drinking coffee, talking to other people, or read-
ing newspapers. The conclusion would be that this is a coffee house, although the 
building is not explicitly marked as such, therefore implicit semantics. Another exam-
ple is the conclusion that ‘this building must be the museum we are looking for, be-
cause there is a crowd of people lining up in front of the entrance.’ Implicit semantics 
is difficult to specify because it is both user- and context dependent, and also tempo-
rally constrained, e.g., opening hours of a coffee house. 

Table 2. Properties for semantic attraction and how they are measured. 

Properties for semantic 
attraction 

Example Measurement 

Cultural and historical 
importance 

ε = T 
ε = 1 
(building very famous 
for its architecture) 

{ }FT ,∈ε  
{ }5,4,3,2,1∈ε  

Scale of importance:  
1 (high) – 5 (low) 

Explicit mark ζ = T 
Sign on front of a 
building 

{ }FT ,∈ζ  
Boolean 

3.3 Structural Attraction 

A landmark is structurally attractive if it plays a major role or has a prominent loca-
tion in the structure of the spatial environment. Examples are intersections and down-
town plazas [29]. The structure considered here is the travel network of a traveler with 
a single means of transport (fixed context). Corresponding to Lynch’s [18] elements 
that structure a city, nodes, boundaries (edges), and regions (districts) are structural 
elements that are perceivable and might become prominent due to their individual 
structuring properties. In this paper we focus on local landmarks for wayfinding, 
therefore only nodes and boundaries need to be considered. The individual properties 
for structural attraction, examples for these properties, and how they are measured can 
be seen in Table 3. 

 



Nodes. Nodes in a travel network are its intersections. For car drivers nodes may be 
street intersections, for pedestrians nodes may be places, and for business travelers 
nodes may be airports. The central structural characteristic of a node is its grade of 
connectivity, or, in terms of graph theory, its degree (Figure 2). The degree may be 
additionally weighted by the quality of the incoming and outgoing edges. For 
example, the street network hierarchy [30] allows for making a distinction between 
two intersecting highways and two intersecting lanes in a street network. Weights 
could be defined on a scale from 5 (highways) to 1 (footpaths), with state streets, 
overland streets, and town streets in between. 

 

Fig. 2. A T-junction (degree = 3) is quite common in street networks and therefore less remark-
able than a central place (degree = 4). 

Boundaries. The perception of the structural properties of boundaries is linked to the 
energy that has to be spent to cross them. We hypothesize that a boundary is the more 
prominent the larger its resistance is. For example, the ‘Westbahn’ (westbound train 
line) in Vienna separates two districts, and can be crossed only over two bridges or 
through a tunnel of 2 km length. A similar perceivable boundary is the ‘Donaukanal’ 
(channel of the Danube) that separates the dense street networks of the first and 
second districts by only a few links. Such barriers form significant shapes in city 
maps: the travel networks show enclosed cells of large boundary edges with a small 
distance between opposite edges, i.e., with a large form factor (Figures 3, 4). A 
measure such as the product of cell size and form factor characterizes the structural 
landmark saliency of the objects in these cells. 



 

Other Structural Properties. The last of Lynch’s structural elements, i.e., regions, 
corresponds to quarters, districts, and other areal subdivisions in the city. Such 
elements may be useful landmarks in larger scale applications. 

 

Fig. 3. Both cells have the same size but the right cell has a bigger form factor and creates the 
larger barrier. 

 

Fig. 4. The way from Spiegelgasse 9 to Dorotheergasse 7 (Jewish Museum) is long compared 
to the distance. The shape of the block of buildings creates a barrier. 

Table 3. Properties for structural attraction and how they are measured. 

Properties for 
structural attraction 

Example Measurement 

Nodes η = (4*2+4*2) 
Second node in Figure 2 
for pedestrians; all streets 
are town streets (w=2) 

η = (i+o) 
Weighted incoming (i) and 
outgoing (o) edges to and 
from a node 

Boundaries θ = 2500 
Channel dividing a district 

θ = cell size * form factor 
Form factor: long side / 
short side 

 



3.4 Used Data 

For the automatic selection of context-dependent landmarks for navigation a number 
of data sources need to be available. According to the nature of landmarks, visual data 
as well as semantic and structural data are required. Hence, city maps and street 
graphs are complemented with images and content databases.  

The following data sources are implied: 
• Digital city maps, such as the multipurpose map of Vienna. City maps provide 

boundaries and classifications of the built areas. This information is useful for 
model-driven image segmentation and rectification ([11], [25]).  

• Navigation graphs for the actual means of travel. Navigation graphs are needed for 
route selection algorithms as well as for the route-specific classification into possi-
ble and real decision points. 

• Rectified, geo-referenced images of façades of each single building located at ele-
ments of the navigation graph. TeleInfo2 provides a complete coverage of geo-
referenced images for the street network in Germany and Austria. Figure 5 shows a 
(distorted) 360°-view of an intersection demonstrating the richness and complexity 
of this type of data. 

 

Fig. 5. A 360°-view of the intersection Stephansplatz / Singerstrasse / Kärntner Strasse / Gra-
ben in Vienna. 

• Accessible databases such as yellow pages, or databases of cultural heritage, pro-
vide the required semantic content.  

4 Assessment of Landmark Saliency 

This section introduces the method used to assess the landmark saliency of a feature, 
i.e., hypothesis testing. Applying this method to the properties presented in section 3 
allows for defining a total measure of landmark saliency for each feature in a dataset.  

                                                           
2 http://www.teleinfo.de 



 

4.1 Finding Landmarks 

As the landmark saliency of a feature is bound to its prominence or distinctiveness, it 
is straightforward to evaluate the distinction between the feature attributes and attrib-
utes of other features. A global landmark needs to be distinctive from all other fea-
tures, but our limitation to local landmarks allows a reduction to features that are 
nearby. The computationally simplest approach to find the most distinctive feature at 
a given location is a maximum (minimum) operator for each attribute, and also for the 
total value of attraction. This procedure guarantees finding a local landmark in any 
case, even if the difference from a local mean is small. However, the result cannot be 
assessed in terms of significance.  

For those measures that are continuous and a normal distribution can be assumed, 
the assessment can be reached by hypothesis testing of the significance of deviations 
from local mean characteristics [13]. Assuming a typical local appearance of objects 
we may suppose a normal distribution for some of the characteristics. Further assum-
ing that there are outliers (namely the landmarks) the estimated mean of the distribu-
tion shall be determined by the median of all local observations. Also, the standard 
deviation can be calculated. Both parameters—mean and standard deviation—depend 
on the definition of a local neighborhood. This definition should be linked to the per-
ceptual capabilities of the human users in a specific mode of traveling, e.g., for pedes-
trians the neighborhood should be chosen smaller than for car drivers. The parameters 
of a distribution are calculated once and then updated only when changes in the local 
environment occur, which happens rarely. This means that the local neighborhood can 
be bound to each feature, similar to a local filter operation. One could choose a rec-
tangle of a specific side length depending on the mode of travel. 

Given the local parameters of the distribution for each characteristic, the feature at-
tributes can be tested for their difference from the mean. The hypothesis is that the 
feature attributes deviate significantly from the local mean. If the hypothesis is re-
jected, the feature attribute is not significantly different from its surroundings. If the 
hypothesis is accepted, the feature has some kind of landmark saliency, related to the 
tested attribute. Type I errors (rejecting a correct hypothesis) lead to distinctive fea-
tures that are not detected. Type II errors (accepting a wrong hypothesis) lead to the 
use of features as landmarks that are not distinctive. Type II errors are more expensive 
because they lead to instructions, which are not useful. This means the power of the 
test—the probability β of avoiding a Type II error—will be set high in the test proce-
dure. 

4.2 Combination of Property Values for Measuring Landmark Saliency 

The individual measures of properties shall now be combined to a global measure of 
landmark saliency for each feature in a dataset. In a first computational step the vector 
of property values is determined for each feature (Table 4). Then, for each feature and 
each property the local mean and standard deviation are determined (see 4.1). Each 
triple of value, local mean, and standard deviation, is subject to a hypothesis test that 
determines whether a property value is significant (s=1) or not (s=0). The vector of 
significance values can be grouped for visual, semantic, and structural significance. 
With predefined weights for each group a total measure for the landmark saliency of a 

 



feature can be calculated. The predefined weights allow for an adaptation to the con-
text (mode of travel) or individual user preferences. 

Table 4. Deriving the total value of landmark saliency for a feature. 
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α … sα 
β1 … sβ1 
β2 … sβ2 
γ … sγ 

 
 

Visual  
attraction 

δ … sδ 

 
svis = (sα+ 
sβ1+sβ2+ 
sγ+sδ) / 5 

 
 

wvis 

 
 

svis*wvis 

ε … sε Semantic 
attraction ζ … sζ 

ssem = 
(sε+sζ) / 2 wsem ssem*wsem 

η … sη Structural 
attraction θ … sθ 

sstr = 
(sη+sθ) / 2 

wstr sstr*wstr 

 
 
 

svis*wvis 
+ 

ssem*wsem 
+ 

sstr*wstr 

5 Wayfinding Instructions with Local Landmarks – An Example 

This section demonstrates the applicability and usefulness of the presented approach 
by showing an example from the introductory case study (section 1). 

 

Fig. 6. The instruction at the decision point shall use the most salient feature at the decision 
point. 



 

5.1 Description of the Situation 

When taking the shortest path from the Café Diglas to the restaurant Novelli—both 
located in Vienna’s first district—the wayfinder reaches at some point the intersection 
of ‘Graben’, ‘Kärntner Strasse’, and ‘Stephansplatz’ (Figure 6 gives a panoramic 
view). This decision point is used to demonstrate the selection of a landmark based on 
the method developed in the paper. The instruction at the decision point has to direct 
one to turn right, and the available data is evaluated for the automatic selection of a 
local landmark. 

5.2 Measures and Weights for the Extraction of a Local Landmark 

The measures for the attractiveness are calculated for all features at the decision point. 
Table 5 shows the individual property values and the total value of landmark saliency 
for the ‘Haas’ building. The total value of landmark saliency is 1.8, which is the 
maximum value for all features. The next total value is 1.2 for the ‘Bank Austria’ 
building. It is therefore recommended to use the ‘Haas’ building as a local landmark 
in an instruction at this decision point. 

Table 5. Deriving the total value of landmark saliency for the ‘Haas’ building. 
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In the given example, the weights are set to wvis = 1, wsem = 1, and wstr = 1. Differ-
ent sets of weights could be selected for different user groups. For example, the set of 
weights wvis = 3, wsem = 1, and wstr = 1 would reflect the visual capabilities of certain 
users and might lead to a different resulting landmark (it would nevertheless not 
change the outcome in this case). 

 



5.3 The Wayfinding Directions 

Having identified a local landmark at the decision point, an instruction can be created 
following any grammar, for instance the grammar defined in section 2.3. The way a 
landmark is communicated is not of central concern in this paper; however, at the 
time of creating the instruction all significant properties of the landmark are known 
and can be used.  

In our case, the identified landmark is the ‘Haas’ building, which is known for its 
controversial architecture (Figure 7). The instruction using the feature ‘Haas’ building 
as a destination landmark is then: 
AT previous landmark 
TURN LEFT ONTO “Stephansplatz”  
UNTIL “Haas building, a dark building of architectural 
significance containing a (signed) Zara shop at the 
right” 

 

Fig. 7. The most salient feature at the considered decision point: the ‘Haas’ building by archi-
tect Hans Hollein. 

The example can be extended by showing the (optional) use of a route mark in the 
instruction. With the landmark ‘St. Stephen’s cathedral’ along the considered route 
segment, the instruction has the following form: 
AT previous landmark 
TURN LEFT ONTO “Stephansplatz” 
PASSING “Stephansdom, a visually salient world cultural 
heritage building” 
UNTIL “Haas building, a dark building of architectural 
significance containing a (signed) Zara shop at the 
right“ 

Note the chosen freedom to generalize different visually significant properties (façade 
area, shape factor) into ‘visually salient.’ 



 

6 Conclusions and Future Work 

In this paper we presented a method to automatically extract local landmarks from 
datasets to be integrated in wayfinding instructions. Different individual properties for 
the attractiveness of a landmark were first defined and then put together to form a 
global measure of landmark saliency for each feature in a dataset. Hypothesis testing 
was used to select the most significant landmark at each decision point for inclusion 
in the wayfinding instruction. We applied the formal framework to an actual wayfind-
ing scenario to show the applicability and usefulness of our approach. 

The work leads to many different directions for future research: 
1. Activity- and profile-based selection of landmarks: Human subjects testing will 

show how the weights of the attraction measures have to be adapted for different 
modes of travel (e.g., pedestrian, bicycle, car) and user groups (e.g., tourist, busi-
ness traveler, handicapped). 

2. One needs to find out how accurate the data have to be to get useful results. 
3. The method needs to be implemented and applied to larger datasets in order to ana-

lyze performance and computational cost. 
4. In the case study we have calculated measures of landmark saliency for individual 

features only. How can aggregate landmarks (formed by connected objects such as 
a block of buildings) be extracted automatically? 

5. Different times (e.g., day- or nighttime) may require different landmarks therefore 
the integration of temporal constraints into route instructions is necessary. 
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