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Abstract. When interacting with the environment subjectsdtéa classify
entities with respect to the functionalities thdfeofor solving specific tasks.
The theory of affordances accounts for this agemirenment interaction,
while similarity allows for measuring resemblan@@song entities and entity
types. Most similarity measures separate the siityil&stimations from the
context—the agents, their tasks and environment—faags on structural and
static descriptions of the compared entities apegy This paper argues that an
affordance-based representation of the contexthiclwsimilarity is measured,
makes the estimations situation-aware and therefopeoves their quality. It
also leads to a better understanding of how unfaméntities are grouped
together to ad-hoc categories, which has not begiaieed in terms of
similarity yet. We propose that types of entities the more similar the more
common functionalities their instances afford aerdg This paper presents a
framework for representing affordances, which afiosetermining similarity
between them. The approach is demonstrated thrapdgmnning task.

1 Introduction

Understanding the interaction between agents agid éhvironment is a fundamental
research goal within cognitive science. The thexfraffordances [1] describes how
agents perceive action possibilities of entitiethimi their environment, arising from
both the physical structures of the entities aredabent. A major problem with this
theory is that it does not account for cognitivel aocial processes. As argued by
Chaigneau and Barsalou [2], function plays a premimole in categorization, which
also emphasizes the importance of affordances #asopahuman perception and
cognition. The process of categorization itself barexplained in terms of similarity.
With the exception of alignment models such as SIEJimost similarity theories
assume that similarity is a static and deconteidedl| process. This contradicts the
definition of affordances as inseparable constroftagent and environment where
entities are grouped around functionality. Similamneasures, such as MDSM [4]
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and SIM-DL [5], are context-aware, but at the saime reduce the notion of context
to the domain of application, i.e., an unstructwsetlof entities or entity classes.

Measuring entity (type) similarity with respect #iffordances requires their
representation. The theory presented in this pgpecifies such representation based
on the conceptual design depicted in [6]. It uttizan extended affordance theory [7],
thus incorporating social-institutional constrairgad goal definitions. The paper
provides a context-aware similarity measure basethe hypothesis that entity types
are the more similar the more common affordances ihstances offer a specific
user for solving a particular task. Hence the presk measurement theory offers a
computational approach towards understanding hagmitiwve processes and social-
institutional aspects interact in categorizatiohisTview strongly correlates with the
three main components of geographic informationersm®, i.e., cognitive,
computational, and social [8]. The presented fraorgvprovides additional insights
into the grouping of unfamiliar entities to ad-hmategories [9].

Starting with a review of related work on affordas@nd similarity measurement,
the paper then introduces a formal representatidheoextended affordance theory,
which supports the separation of perceiving affocds from their execution [6].
Based on this representation similarity measuresdaveloped that determine the
similarity between entity types by comparing affandes. For that reason we
decompose the language describing the affordanuesransform it to conceptual
spaces that support similarity measurement by ghogia metric [10]. This leads to a
representation of functions and actions in conadpspaces [11]. The approach is
demonstrated using a scenario from psychology ahthased planning, where an
agent needs to change a light bulb, involving reasp about what entities offer
support for reaching the ceiling. The presentedrhdocuses on entity types but
allows for modification to work on the level of imitlual entities as well.

2 Related Work

This section introduces the notion of affordanteektended theory, and a functional
representation framework. We then provide an oesvviof semantic similarity
theories—focusing on those related to GlScience—Adranning.

2.1 Gibson’s theory of affordances

The termaffordancewas originally introduced by James J. Gibson whestigated
how people visually perceive their environment His theory is based on ecological
psychology, which advocates that knowing is a dipgocess: The perceptual system
extracts invariants embodying the ecologically Higant properties of the
perceiver's world. Animal and environment form amséparable pair and this
complementarity is implied by Gibson’s use of egidal physics.

Affordances must be described relative to the agEot example, a chair’s
affordance “to sit” results from a bundle of attribs, such as “flat and hard surface”
and “height”, many of which are relative to theestf an individual. Later work with
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affordances builds on thegent-environment mutualift2]. According to Zaff [13],
affordances are measurable aspects of the envimdnimet only to be measured in
relation to the individual. It is particularly imgant to understand the action relevant
properties of the environment in terms of valudsinsic to the agent. Warren [14]
demonstrates that the “climbability” affordancestdirs is more effectively specified
as a ratio of riser height to leg length.

Several researchers have believed that Gibsontrythe insufficient to explain
perception because it neglects processes of cognitlis account deals only with
individual phenomena, but ignores categories ohpheena [15]. According to Eco
[16], Gibson's theory of perception needs to beptmented by the notion of
perceptual judgments.e., by applying a cognitive type and integrgtstimuli with
previous knowledge.

Norman [17] investigated affordances of everydayngbs, such as doors,
telephones, and radios, and argued that they prastiing clues to their operation.
He recast affordances as the results from the mietéapretation of things, based on
people’s past knowledge and experiences, whiclapgpéed to the perception of these
things. Gaver [18] stated that a person’s cultw@gial setting, experience, and
intentions also determine her perception of affoods. Affordances, therefore, play a
key role in an experiential view of space [19, 28§cause they offer a user centered
perspective. Similarly, Rasmussen and Pejtersehd@ihted out that modeling the
physical aspects of the environment provides onpad of the picture. The overall
framework must represent the mental strategies capabilities of the agents, the
tasks involved, and the material properties ofaihreironment.

2.2 Extended theory of affordances

In this work we use an extended theory of afforésnwithin a functional model,
which supplements Gibson’s theory of perceptionhwilements of cognition,
situational aspects, and social constraints. Thigengled theory suggests that
affordances belong to three different realms: paisisocial-institutional, and mental
[7]. In a similar and recent effort, the framewarkdistributed cognition was used to
describe and explain the concept of affordance.[22]

Physical affordancesequire bundles of physical substance propertias match
the agent’s capabilities and properties—and theeefs interaction possibilities. One
can only place objects on stable and horizontalases, one can only drink from
objects that have a brim or orifice of an apprdpriize, and can be manipulated, etc.
Common interaction possibilities are grasping thirgd a certain size with one’s
hands or walking on different surfaces. Physicébrdiinces such as the sitability
affordance of a chair depend on body-scaled ratog, doorways afford going
through if the agent fits through the opening.

It is often not sufficient to derive affordanceorfr physical properties alone
because people act in environments and contexts seitial and institutional rules
[23]. The utilization of perceived affordances, haligh physically possible, is
frequently socially unacceptable or even illegdieTphysical properties of an open
entrance to a subway station afford for a persomdéwve through. In the context of
public transportation regulations it affords movitgough only when the person has
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a valid ticket. The physical properties of a higkvedford for a person to drive her car
as fast as possible. In the context of a spediiffit code it affords driving only as
fast as allowed by the speed limit. Situations sashthese include both physical
constraints and social forces. Furthermore, thelaviiealm of social interaction
between people is based anocial-institutional affordancesOther people afford
talking to, asking, and behaving in a certain way.

Physical and social-institutional affordances & gources afental affordances
During the performance of a task a person findséiein different situations, where
she perceives various physical and social-institati affordances. For example, a
public transportation terminal affords for a persorenter different buses and trains.
It also affords to buy tickets or make a phone. dalpath affords remembering and
selecting, a decision point affords orienting areciding, etc. In general, such
situations offer for the person the mental affomdarof deciding which of the
perceived affordances to utilize according to realg

2.3 Functional representation of affordances

Our conceptual framework of affordances uses amstet] version of thédlPE
theory of function which explains how functional knowledge is repreed and
processed [24]. This theory explains people’s kmeolge about function by
integrating four types of conceptual knowledge: tbtig, Intentional perspective,
Physical environment, and Event sequences. Furdtiomowledge emerges during
mental simulations of events based on these domaiesHIPE theory is well suited
to the formalization of affordances because ofrthaictional character [6]. Similar to
functions, affordances are complex relational aoiess, which depend on the agent,
its goal and personal history, and the setting. AIHRE theory allows for representing
what causes an affordance and therefore supp@s$smang about affordances. More
specifically, it is possible to specify which conmgmts are necessary to produce a
specific affordance for a particular agent.

Figure 1 demonstrates the conceptual frameworkefr¢lation between the three
affordance categories presented in section 2.2nguthe process of an agent
performing a task. The agent is represented thrisgihysical structurePRS), spatial
and cognitive capabilitiesCap), and a goal@). Physical affordancedéff) for the
agent result from invariant compoundSomp—unique combinations of physical,
chemical, and geometrical properties, which togefbiem a physical structure—and
the physical structure of the agkrithis corresponds to Gibson’s original concept of
affordance: a specific combination of (physicalpgerties of an environment taken
with reference to an observer.

Social-institutional affordance$(aff) are created through the imposition of social
and institutional constraints on physical affordesie-when physical affordances are
perceived in a social-institutional conte®bnt (SI) While performing a task the
agent perceives various physical and social-irtgiital affordances within a spatio-
temporal environment represented throughv (S,T) This corresponds to HIPE's

! The arrows in Figure 1 represent a function thapsompandAgentto Paff
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notion of a physical system and allows for localigithe perception of affordances in
space and time.

Comp PS)\A
Paff
Agent (| F>S7/v

Cont (Sl)—> Slaff h

Env (S, T)—» Maff —— Op (Int)— O (Int) —Op (Ext}— O (Ext)
Task

Agent (Cap,

Figure 1: Functional representation of affordances for gena

Mental affordancegVaff) arise for the agent when perceiving a set of jghysind
social-institutional affordances in an environmenta specific location and time.
Affordances offer possibilities for action as wels possibilities for the agent to
reason about them and decide whether to utilizentbenot, i.e., mental affordances.
The agent needs to perform an internal operatgn (Int) to utilize a mental
affordance. Internal operations are carried outth@n agent’s beliefs (including its
history and experiences) and lead to an internedooeO (Int). In order to transfer
such outcome to the world, the agent has to perfammaxternal operatio®p (Ext)
which then leads to an external outco®gExt) i.e., some change of the external
world. This external change, in turn, leads to n@wsical affordances, situated in
social-institutional and spatio-temporal contexts.

2.4 Semantic similarity measurement

The notion of similarity originated in psychologndawas established to determine
why and how entities are grouped to categories, whgt some categories are
comparable to each other while others are not P&, The main challenge with
respect to semantic similarity measurement is tbhemparison of meanings. A
language has to be specified to express the naf@matities and metrics are needed to
determine how (conceptually) close the comparedientare. While entities can be
expressed in terms of attributes, the representaticentity types is more complex.
Depending on the expressivity of the representalemmguage types are specified as
sets of features, dimensions in a multidimensiosédce, or formal restrictions
specified on sets using various kinds of descniptimgics. Whereas some
representation languages have an underlying fosmadantics (e.g., model theory),
the grounding of several representation languagesiins on the level of an informal
description. Because similarity is measured betwestity types which are
representations of concepts in human minds, it mi#pen what is said (in terms of
computational representation) about entity typelisTagain is connected to the
chosen representation language, leading to the tfett most similarity measures
cannot be compared. Beside the question of repia#®sm context is another major
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challenge for similarity assessments. In many casesningful notions of similarity
cannot be determined without defining in respeavk@at similarity is measured [26,
27].

Similarity has been widely applied within GIScien8ased on Tversky's feature
model [28], Rodriguez and Egenhofer [4] developed extended model called
Matching Distance Similarity Measure (MDSM) thapports a basic context theory,
automatically determined weights, and asymmetryubldhand Schwering [29, 30]
used conceptual spaces [10] to implement modelsdbas distance measures within
geometric space. The SIM-DL measure [5] was dewsldp close the gap between
geo-ontologies described through various kinds esfcdption logics, and similarity
measures that had not been able to handle thessiyitg of such languages. Various
similarity theories [31, 32] have been developeddtermine the similarity of spatial
scenes.

2.5 Al planning

Planning is the development of a strategy for sgwva certain task and therefore a
precondition for intelligent behavior. In termsartificial agents, a plan is a chain of
actions, or action sequence, where each actioe fgebfformed depends on some pre-
conditions, i.e., a certain state of the world. Eeaction potentially causes effects or
post-conditions that affect or trigger subsequections in the chain. The plan
terminates when the intended goal is reached. Anglain Artificial Intelligence (Al)
takes therefore three input variables: a representaf the initial state of the world, a
representation of the intended outcome (goal), arskt of possible actions to be
performed to reach the goal. Formally, a plan camdgarded as a tript®, I, A (p,
g/ ) [33, 34] whereO is the intended outcomethe initial state of the world, arsla
set of actions—each defined via pre- and post-¢cmmdi p, g. However, after
executing actions the state of the world is changddch impacts the future plan,
therefore making planning a non-linear process. @isinguishes between offline
and online planning. Offline planning separates dteation of the strategy and its
execution into two distinct phases; this requiretable and known environment. In
contrast, online planning is suitable for unknowmd aynamic environments where a
pre-given set of behavioral rules and models cabeadetermined. One of the main
challenges within dynamic environments is that cae neither assume complete
knowledge of the environment nor the availabilitfy entities (as part of such
environment) supporting certain actions.

3 Use Case

Contrary to classical planning, our vision of adoefance-based and similarity-
driven planning service executes as follows: Thenagdetermines an intended
outcome (goal). Next, the agent selects a posaifitedance descriptor (see section
4) from its internal knowledge base that eithed$eto the intended goal or is part of
the chain towards it. The agent then needs towevliether an entity of the type
specified in the affordance descriptor is availablthin its immediate environment
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and if not, whether it can be substituted by arteof a similar type. After that the
agent can execute the (similar) action specifiedth®y selected affordance. Thus,
reaching a new state, the agent selects the nésoroe to be reached towards the
final goal and again chooses an appropriate affer@adescriptor. The process
terminates when the final outcome is reached csupporting entity can be detected
within the current environment.

To illustrate this approach, we introduce a usescashich is derived from the
literature on ad-hoc categories [9, 35]. We asstimé an agent needs to change a
light bulb in an office room. Before doing so, thgent has to fetch an additional
entity that raises it up to a certain level in arttereach the ceiling and change the
bulb. In terms of affordances, the task is two-falte agent must find an entity that
affords standing on and has to be movable to beedaor pushed to the required
position. If a single entity lacks sufficient heighn additional affordance will come
into play, namely that of being stackable. As iifaged in Figure 2 the office room
contains several candidate entities, such as g deghair, and books, which could be
utilized to fulfill the task. Some entities are rafne, stackable, and offer support for
standing on them at the same time, while otherfllfthese requirements only
partially. We assume that the agent has the negessgabilities to categorize
entities accordingly. If an entity is of a cert&ype, it can be manipulated as specified
in the affordance descriptor (section 4) storeth@nagent’s knowledge base.

A

Figure 2: Candidate entities needed to change a light bulb.

Figure 3 shows a simplified representation of ttfeahging a light bulb’ scenario
using the framework discussed in section 2.3. Thent perceives affordances
involving the entitieslesk chair, andbookin the office environment, where the agent
is spatio-temporally located. The task is changimg light bulb, which involves a
series of sub goals. The physical structure ofdek affords the agent to move it,
stand on it, stack it, and to climb it. Thaff of moving the desk is constrained
through the following social context (or rule): Mog the desk will lead to scratches
on the floor, therefore, one should not slide thekdacross the floor, resulting in the
Slaf{not move).

The chair affords the agent to move, stack, cliantg sit on it. Books in the office
afford the agent to move and stack them. Noticeahaf this knowledge, which had
previously been acquired by the agent, is represefar the entity types desk, chair,
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and book. Perceived instances in the agent’s emviemt are categorized with respect
to these types and therefore the agent can utilimaviedge associated with them.
This process is similar to a perceptual cycle [@Bkre a schema directs exploration
and sampled objects modify the schema.

Paff(move ~ Cont (SlI)
Desk (PSy—] Paff(stand)
( Paff(climb)
Paff(stack

Slaff(not move)

Agent (PS) Paff(move’
Paff(sit)

- Paff(climb)

Chair (PSy—* Paff(steck)

\ Paff(move’
Book (PS;—™  paff(stack) \

it
Office (X,10am) @

Change light bulb
Agent (Cap,G)

Figure 3: Functional affordance-based representation of ase.c

All of these functions result in the top-lewdkff for the agent, namely to evaluate
whether the task of changing the light bulb cariuiled with the given constraints
represented through the functions. More formallye t(interconnected) sets of
physical and social-institutional affordances a&fiveen point in space and time result
in a set of mental affordances for the ageRaff Slaff g s 1) => {Maff}. Maffsare
therefore higher-order functions becaBsdfsandSlaffsare functions themselves.

Planning Outcome Move chair, Stand on

Maff Utilize {Paff}? Utilize {Paff}! climb chair chair

Figure 4: Functional activity process for the agent.

The second part of the process is representedgard-i4. The agent performs
internal operations (within the planning proces®ciding whether the task can be
performed based on the given functions. This i® aldere the agent performs
affordance-based similarity measurement to find whiich entities can be used for
the task of changing the light bulb. The outcomehif operation is the decision to
utilize a set of affordances. Moving and climbirg tchair are external operations,
which subsequently lead to the external outcomettigaagent stands on the chair and
can change the light bulb. This is an abstracttomfmore complex online planning
tasks, as we assume that the same entity can befarseach step (moving, climbing,
and standing).
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4 Representation of Affordances

This section introduces a representation of affocda built upon the extended theory
described in section 2.2, and provides the groumklwéor the similarity
measurements established in section 5.

Based on previous definitions [37, 38], we speeifyaffordance\ as a triple(O,

E, {AC}). The outcoméO is the change of world state after execution efdltions

AC with respect to manipulated entities of tyge The same affordance can be

realized by several actions—each described by pay8H and social-institutiongbl

constraints, i.e., pre-conditiondAC is therefore defined as a set of actions

{aci(phy,sh),..., ag(ph,,siy)}. Constraints are tied to a certain action witlpees to an

entity (of a given type), while the outcome is dqfox all actions defined for the

affordanceA. Therefore the outcome can also be regarded gsostecondition of all
actions ofA. For the representation of outcome, physical, sodal-institutional
constraints we employ unary and binary predicates, apply a restricted kind of
predicate logic. The predicates (predicate vargbére part of the agent’s internal

knowledge base, i.e., no semantic problems arieen fthe question of what a

predicate, such as hasPosition, means to the ageatknowledge base also contains

information about the inter-relation between pratks, such as hierarchies or (spatial
and temporal) neighborhood models. The predicaji losed to specify actions and
outcome can be regarded as a subset of first datge. Valid operators and
guantifiers are:

e Operators (constructors): logiaabt (=), and (A), andimplication (—)

e Quantifiers:y, 3, and3! ( exactly ong

«  Arithmetic operators: <, >, >, # and = applied t®"

In addition, we use some abbreviations to improgadability. This way, some

necessary assumptions are made about the latsfdramation to conceptual spaces

without the need of going into detail about thatieh between logics and conceptual
spaces (see also [39]), and the problem of mapping.

o (Vedlr P(e,)A E(€)A R(N A RMX) A (r< X)) A ...— Q(e) is abbreviated by Q:
P(e,<x) A ...; where P,Q are predicates, e is an instance ah&,r, x are real
numbers. This allows for statements such as thestwevn for carry(ability)
below.

* The same wayed!f P(e,f) A E(e) A F(f) is abbreviated by P(e,F(f)); where f is
an instance of F such as in hasPosition(e,Posijpn{his states that an entity
needs to have a position from where it is moveanmther one. The same kind of
statement can be made by adding negation, such(es-®arquet(p)).

The perception and execution of affordances is heodén terms of mapping

statements, i.e., predicates connected via logiodl to Boolean values. Physical

constraints describe statements about the physiopkrties of entities that need to be
true before the specified action can be performed wépect to entities of the type

E. Social-institutional constraints specify statetseabout social aspects regarding

the interaction with entities (again abstractetiype level) that need to lirie before

the specified action can be performed. Both typesomstraints are specific with
respect to the agent perceiving the affordance. dfdan that entity types€ are



10 Krzysztof Janowiczl and Martin Raubal2

specified only via what their instances afford eegi agent and are the more similar
the more common or similar affordances they support

Summarizing, a certain type of entities affords sthimg to a specific agent if the
agent can perform actions on such entities; Aés,true with respect to the agent if at
least one of the actions 81C is performable (it$H and Sl constraints are satisfied,
i.e., true) and after realizing the affordance the state of the world changes as
specified in O (i.e., if the predicates specified for the outcorage true).
Consequently, although an agent can perceive tfredahce of something to be
moveable, it could fail to move the entity becaon$external factors not explicitly
stated in the action constraints. This reflecthtibe separation of internal operation
and outcome, and external operation and outcomerided in section 2.3. Note that
because we assume the agent to be fixed it is adtgb the affordance definition
itself but its physical and social-institutionalntext is defined via constraints on the
actions.

In terms of the light bulb scenario, an affordamigscriptor for moveability of
desks is specified as follows:

Move-ability (
Outcome (O): hasPosition(e, Position(y)) AY #X
Entity Type (E): Desk
Actions (AC):
car r y(PH:hasPosition(e, Position(x)) A WeightKg(e,  <20) A LengthCm(e, <100) A ...)
push(PH:hasPosition(e, Position(x))) A WeightKg(e, <100) A ...
Sl: on(e, -Parquet(p))

)

For our agent desks afford moving if they can bbeeipushed or carried from a
positionx to another position (specified as a positimt being the start locatiox).
Due to the agent’s physical capabilities it is alecarry desks with a weight below
21kg and a length of up to 100cm. Pushing the @eak alternative action and could
be even performed with heavier desks (up to 100Rgshing though may damage
floors. Therefore an entity of type desk is moveabit either weighs less than 21kg
and is not longer than 100cm, or weighs less ti@kd but the supporting floor is
resistant to damage caused by sliding heavy entiieoss it (parquet is not). In this
example the restrictions are mostly based on tlysipal capabilities of the agent and
the structure of solid entities. In other ad-hotegaries such as ‘things to extinguish
a fire’ the candidate entities (e.g., water, samd,a blanket) also differ in their
consistency. It is still possible that the agentcpires the affordance and tries to
carry the desk but during execution recognizes fbatexternal reasons the desk
cannot be moved (e.g., because the desk is mototed floor). Depending on these
restrictions and the abilities of the agent somskslanay not be movable at all. The
guestion whether such entities should still be gaieed as desks is not discussed
here but will be taken up again in the future weektion.

This example also points to the connection betvaffmdances. Depending on the
granularity, one may argue that there are explmishability and carryability
affordances that can be defined as sub-affordaatesoveability. In addition, the
social-institutional restriction introduced for fmirsg desks could also be perceived as
an affordance (damageability). Damageability ofofk is then defined via an
outcomeO specifying that the state (in this case, the sejfaf the floors is changed
by several actionAC.
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5 Affordance-based Similarity Measurement

This section describes how similarity between gritipes can be measured based on
the assumption that types of entities are the nwnalar, the more common
functionalities their instances afford to a givegeat. We therefore introduce a
framework that specifies what parts of the affoenare compared and how. After
defining what makes affordances similar, we use dingilarity values determined
between affordances to develop a similarity meagurentity types. As we cannot
directly handle the expressivity of the affordamepresentation with respect to
similarity measurement, the affordance descript@ed to be transformed to regions
within conceptual spaces. Similarity between thesgons can be computed using
existing measures. Overall similarity is then dimsat as the weighted sum of the
individual similarity values measured between afforce descriptors. This step is
comparable to a weighted) Tversky Ratio Measure such as used in MDSM. &t la
the same kind of measure is applied to determitigyaype similarity.

5.1 Similarity between Affordances

Each affordance is specified by the change in wstdde its execution causes and the
actions performed on certain types of entitiesdbieve this outcome. As the entity
types are only described in terms of what theyrdffsimilarity between affordances
depends on the action and outcome specificatiorevbduate whether an affordance
defined for a certain entity type is valid in thentext of a specific agent and entity,
predicates are resolved to Boolean values. Sinyilthough rests on the assumption
that affordances are the more similar the morelaintheir descriptors are. As no
metric can be defined to reason about the simjlaffipredicates in general, we define
mappings for the predicates to quality dimensiorithiov a conceptual space [10],
hence being able to utilize a metric for comparis@milarity measures are
asymmetric, therefore the direction of the commarimust be taken into account. In
the following, the indexs is used for source whiledetermines the target, i.e., the
compared-to predicate.

First we consider predicates that map entitiesaio-megative real number®Y).
Such predicates can either describe facts aboittesntf the type specified in the
affordance or external entity types. The predicatestransformed to dimensions and
the numeric values to upper or lower bounds ofdingensions. If a predicate maps to
a single value, lower and upper bounds are equab lower bound is specified it is
set to 0 or in the case of upper bound to infin@ymensions referring to the entity
type E together form a conceptual space while dimensieferring to other entity
types form conceptual spaces for those tpElis is also the reason why the action
and outcome descriptors cannot be directly utilizeddetermine the similarity
between entity types. Physical and social-instdi constraints as well as outcomes
may directly refer to the specified entity typetorits environment, e.g., via external
types.

2 n such cases similarity is determined in a réearsay as entity types are again explained in
terms of affordances.
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In cases where predicates map between entitigsahsformation to dimensions is
more complex. The predicates can still be represeas dimensions but only on a
Boolean (i.e., nominal) scdleThis means that predicatgs and g, are equal
(similarity is 1) if ps = g, which also includes rewriting rules (such as Dergan
rules forAn andv as well as ford andV) or if g can be inferred fronps. These
inference mechanisms include standard inferencesruuch as elimination and
introduction but also spatio-temporal reasoning;. & typical example can be
constructed assuming thpt PO(X, Y) andg: —=DC(X, Y) in terms of the Region
Connection Calculus [40]. Note that the same exanfphd other inference rules)
does not work in the opposite way, which is comsistwith keeping similarity
measurement asymmetric. In other cases similaidy i

The connection between single predicates usiigpreserved within the structure
of conceptual spaces by the amalgamation (+) oilaiity values (Equation 2). The
pre-processing step of turning predicate-basedrigisns to conceptual spaces is
applied to any physical and social-institutionahsipaints of all action descriptoas
€ AC and the outcome descriptdsof source and target affordandgandA;. This
creates at least one conceptual space for eacnamtid outcome o andA;. The
process is computationally expensive, but it idistand therefore easy to cache
offline. The process is depicted in Figure 5.

hasPosition 4
14 A

/ Carry: (hasPosition(E,x) A maxWeightKg(E,20) A maxLengthCm(E,100) A ...)

Ve = hasWeightKg
. e
. Ve
1 /-’
hasPosition - Rk

1A

‘

hasLengthCm

/' Carry: Desk
»

hasWeightKg /‘

grins

Carry: Chair 60 hasLengthCm

Figure 5: Creating and mapping dimensions from predicates.

After transformation to conceptual spaces an algmnprocedure [5, 41] must be
established to determine which conceptual spaceiseoflescriptors ofs and A, are
mapped for similarity measurement. Each concep$yace describes either the
capabilities (in terms of physical or social-instibnal constraints) of the agent to
perform an action with respect to an entity typeher desired outcome for all actions
specified for the affordance. From this the follogialignment rules can be derived.

% While this approach is used in most of the literaton similarity measures within conceptual
spaces, one may argue that such mapping violagesotion of dimensions and regions.
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e Spaces representing the outcome aspedsarfe mapped to such frofg

e Spaces representing physical aspects or socidlitishal aspects of an action
from As are mapped to such frof

e Space specifying dimensions for different typesmifties cannot be mapped.

» Physical and social-institutional aspects of amoactrom A are jointly mapped
to their counterparts of an action frédnand not separately to different actions.

» Action names are unique within the agent’s knowedgse, therefore action
descriptors ofAs andA; are mapped if both share the same name, or if fi@th
situated within the same hierarchy or neighborhowdiel. In the latter case, the
maximal possible similarity is decreased to theilaiity within the hierarchy or
neighborhood [5, 42].

» If no counterpart for a conceptual space represgmbnstraints of an action can
be found, the similarity value is 0.

Finally, after constructing conceptual spaces fbe taffordance descriptors,
semantic similarity between conceptual regions lmameasured. Semantic distances
are calculated based on the standardized diffeseat¢he values for each quality
dimension. The final values are normalized by theber of dimensions used in the
calculation. This way, a semantic distance functietween two conceptual regions
can be established [43]. Here, quality dimensiorgepresented on either Boolean or
interval scale. For Boolean dimensions, the vatsstake 1 or O, therefore semantic
similarity between two conceptual regions for e&olean dimension is either 1
(completely similar) or 0 (completely dissimilath order to calculate asymmetric
similarity for two intervals we consider a simpdifi version of thdine alongness
ratio for topological line-line relations [44]. Positiv@milarity values of intervals
result only if there exists at least a partial ¢tmebetween intervals. If such overlap
does not exist, the similarity evaluates to 0, icemplete dissimilarity. This makes
sense for the described scenario, because minimodn naaximum values for
dimensions are hard constraints for the agent.cBfmulation of interval similarity is
given in Equation 1.

Sim(li,1)) = length(in1)length(l) with i,j & {1,2}, i )

The final measure for semantic similarity betweso tonceptual regions X and Y is
depicted in Equation 2, whe&zalerefers to either Boolean or interv8l,and§ are
the respective values of a quality dimension tocbenpared, andh refers to the
number of dimensions.

SimegX,Y) =2(SimscadS,S)) /N )

After being able to determine the similarity wittdanceptual spaces, the similarity
between affordances is defined as depicted in kquat

SIM(AGA) = wac® YnZ Simac + wy*simo; where Zw =1 (3)

Sim, is specified as the weightedv)( and normalizedsum of similarities for
compared actions (sip) and outcomes (Sigh expressed as similarity within
conceptual spaces. While gins directly determined from the outcome conceptual
space ofA, andA;, the similarity between actions is determinedthia weighted sum
of the similarities for the physical and socialtingional aspects (Equation 4). The
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number of compared actiondn Equation 3 represents alignable actions, rotaltal
number of all available actions.

SiMac = @pr* SiMpy + ax*simg; where 2w =1 4

Summarizing, as depicted in Figure 6, affordanaas lwe compared by mapping
their descriptors to conceptual spaces and expigegsedicates as dimensions of such
spaces. The overall similarity is then definedtasweighted sum for the individual
similarities computed for actions and outcomes, rehthe former depend on the
similarity values computed for their physical andcial-institutional constraints
(regarding a certain type of entity and agent).

T/ T Ag A, A,
S T.f..:—) LIS T}f_::_) T_;_;__) [:::___)
v ph / vSL \ p)
<" T~y S
~\ ac (e.g. carry) Outcome
‘“ -
~ ;
. 4 N
\l\ !‘ !,'
. A 4 b
w=(...+ mm\[\(w* +w=" )t + w=sim |

Figure 6: Comparing affordances via their descriptors.

5.2 Similarity between Entity Types

Based on our core assumption that entity typesha@renore similar the more common
functionalities their instances afford an agent golving a given task), similarity
between types can be determined as depicted intiegua

SIMKEs Ey) = n* ZSimy (5)

Again, this raises the question which affordandesukl be compared. The theory
presented in this paper is driven by the idea bfirsg tasks via the agent’s interaction
with its environment and hence focus on achievioglgy Therefore, affordances are
selected for comparison with respect to their omieoi.e., the affordance and A,
with the highest outcome similarity (sinare matched.

5.3 Weights

Weighting is a useful method to adjust the simijameasurement process to better fit
a given task. However, skeptical readers may atbaé weights can be used to
manually tweak the numbers until they fit the extpdcresults. This section briefly
discusses the role of weights in the presented dvark to counteract such
argumentation. The weights introduced in sectiofh @re comparable to the
commonality and variability weights introduced aartpof the context theory of
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MDSM [4] and can therefore be automatically deteedi without the need of manual

adjustment. While MDSM distinguishes between atitiéls, functions, and parts to

describe and weight entity types, our approach lwanweighted with respect to

physical and social-institutional constraints asll veess outcomes. By using such

weights the importance of these aspects can benatitally adjusted to improve the

quality of the similarity estimations. Commonalitycreases the similarity of such

kinds of descriptors that are common for most caegbaentity types and tends to

increase overall similarity. In contrast, variafyilistrengthens the weight of such
aspects that are unique for certain types of estiind tends to decrease overall
similarity. In terms of the light bulb use casegiabinstitutional aspects may become
more relevant for the measured similarity if theggbal constraints of the entities are
more or less the same (or vice versa).

The proposed weights can be used to define aspedtselevant for a certain task
(by setting the weight to 0). If a task is of funuental importance—as can be
imagined for the wheelchair example described Jai6 may be reasonable to ignore
social-institutional constraints and focus on tlcome aspects. In other words, the
proposed weights can be either automatically deteminor used as exclusion factors
depending on the task. In both cases the weighteticequire manual pre-settings.

6 Application to Use Case

This section applies the presented framework to lifjet bulb use case. After
perceiving the available entities in its environmtdme agent recognizes that it is not
allowed to slide the desk towards the light bulbodeled as social-institutional
constraint). The agent's physical capabilities enmevit from carrying the desk,
therefore other entities must be used to perforentéisk. From previous interaction
with its environment the agent knows several fabisut certain types of entities. This
information is stored as affordance descriptorhéagent's knowledge base. To find
out whether other entitiesf) can be utilized, the agent compares the afforelanc
descriptors (relevant for performing the task) eskk E) with those of books and
chairs (figure 3).

As argued in section 4 we assume that the physaatraints on carry und push
depend on the abilities of the agent and the sireodf the moved entities, leaving
other aspects, such as texture, shape, and mimiral(which affect graspability)
aside. The following specification for moveabilibf books does not state that the
agent is physically unable to carry heavier bobks represents its current knowledge
about the interaction with bocks

Move-ability (

Outcome (O): hasPosition(e, Position(y)) AY #X

Entity Type (E): Book

Actions (AC):
car r y(PH:hasPosition(e, Position(x)) A WeightKg(e, <3) ALengthCm(e, <30)A..)
push(PH:hasPosition(e, Position(x))) A WeightKg(e, <3) A ...

)

4 Instead of assuming the previously acquired kndgédeas an upper bound, one may also
argue for positive infinity as an upper bound.
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Contrary to desks, social-institutional constraiats not defined for moving books.
The comparison between moveability of desks ank®gtelds a similarity of 0.68.
In the case of chairs, where maximal weight andtlenvere set to 10kg respectively
60cm, the resulting similarity is 0.86. This refiethe fact that, with respect to weight
and length, the experience of moving desks andligimore similar than between
desks and books.

The same comparison is also computed for stantigbiitackability, and
climbability, and finally leads to a similarity @.36 between desks and books and
0.64 between desks and chairs. Due to the situatdre of similarity and
categorization the results cannot be used to atfyatechairs or books are similar to
desks in general [27]. However, to fulfill the giveask, i.e., to change the light bulb
the agent can conclude from previously acquiredwtedge that chairs are possible
candidates (internal operation). While trying tdizet the individual chair (external
operation) the agent may fail because—contrarytherochairs—the available chair
might not have sufficient stability, and could thetilize the books. If the chair is
suitable to solve the task, the agent adds a nfardahce (restricted by the physical
properties of the used chair) about chairs toritswedge base. In case of the books,
standability and climbability are added. This retato the fact that humans cannot
perceive all information about the physical projsrbf a certain entity and therefore
reason on a category level (based on previous leugel). This post-processing of
entity types can be regarded as a learning process.

7 Conclusions and Future Work

The presented methodology provides a frameworktlier conceptual affordance
representation discussed in [6] and specifies howneasure similarity between
affordances and entity types. The formalizationtesgs important aspects of the
conceptual design, such as the distinction betwsessical and social-institutional
constraints. Via the outcome specification our apph is able to distinguish between
the perception of an affordance and its execut®imilarity measurement is not a
static procedure but modeled as a situated pr¢26s85] within a context formed by
the actor, task, and environment. On the one haisgtovides insight into similarity-
based categorization of unfamiliar entities (entyfyes) such as for ad-hoc categories
[9]. On the other hand it allows for similarity-lesreasoning and planning.

Further work should focus on providing a detailednfal system underlying the
presented affordance theory. The important quessiot directed to whether a more
expressive language can improve the computati@pebsentation of affordances but
whether such representation still allows for simityameasurement. In this paper
simple predicates were transformed to regions iteptual spaces to determine their
similarity. One obvious problem thereby is that dimensions are regarded as
independent from each other, which is normallythetcase. For instance, restrictions
such as weight and length defined for the actiohshe moveability affordance
influence each other. In addition, only such pratiis were allowed that could be
mapped to the conceptual space representation.vé&@ame these restrictions and
allow for more complex logical statements withie tiffordance definition, one could
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consider the integration of approaches such asdheeptual spaces logic [39] or
similarity measurements a la SIM-DL. Analogy mayawmeadditional tool to compare
logical statements that, due to the nature of pegdilogic, cannot be compared in
terms of similarity. The presented theory wouldoabenefit from the integration of
measures focusing on similarity between spatiahese[31, 32] and case-based
reasoning [45]. While we have introduced Al plamnin argue for the representation
of affordance as a tripl@, E, {AC}, further work is required to adopt the presented
methodology to real planning and learning scenafiibss will involve the interaction
with several types of entities to solve a certaskf instead of trying to find one entity
(of a given type) that can be used to fulfill albsasks. Such an extended approach
can then be tested with real geographic data sets.

Additional research should investigate the relatiop between affordances and
how affordances can be combined. While our workises on entity types the model
can be adapted to entities as well. This raises|tiestion whether an entity is still of
some sort independent of whether it offers cer¢édfordances (e.g., a broken cup).
Considering temporal aspects, one may argue thaiceupied chair (therefore not
supporting sitability) should not be categorizedchair anymore. The agent should
not reason about entities in terms of categoriesh &s desks, books, and chairs, but
as members of sets determined by affordances. fighhbulb changing support’-
entity is then defined as a member of the ad-homdd set ‘moveabland standable
and climbable @nd stackable)’. The task of similarity is therefore distinguish
between central and radial entities.
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