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Abstract. Similarity measurement is currently being established as a
method to explore content on the Semantic Web. Semantically anno-
tated content requires formal concept specifications. Such concepts are
dynamic and their semantics can change depending on the current con-
text. The influence of context on similarity measurement is beyond dis-
pute and reflected in recent similarity theories. However, the systematics
of this influence has not been investigated so far. Intuitively, the results
of similarity measurements should change depending on the impact of
the current context. Particularly, such change should converge to 0 with
a decreasing impact of the respective contexts. To hold up to this as-
sertion, a quantification of the impact of context on similarity measure-
ments is required. In this paper, we use a combination of the SIM-DL
theory, which measures similarity between concepts represented using
description logic, and a context model distinguishing between internal
and external context to quantify this impact. The behavior of similarity
measurements within an ontology specifying geospatial feature types is
observed under varying contexts. The results are discussed with respect
to the corresponding impact values.

1 Introduction and Motivation

Information integration and retrieval are central aspects of the Semantic Web. It
has been argued that cognitively plausible methods for achieving such integration
and retrieval require the employment of semantic similarity measurement [1].
The influence of context on semantic similarity measurement is a well-known
phenomenon that has long been observed in psychological experiments [2]. As
an example, consider an information retrieval scenario where a user is looking
for buildings that are similar to churches. For a similarity-based ranking of the
results, the best matches depend on the context: within a religion context these
could be cathedral, chapel and convent, whereas for a sightseeing context they
could be palace, castle and museum.

Although the results of human similarity ratings depend on the context, and
this dependency is also reflected in recent similarity theories [3–5], the nature
of this influence and its actual impact have not been subject to thorough re-
search yet. Previous work looked primarily at how contextual information can



be employed to adjust the results of a similarity measurement. In this paper,
we present observations of similarity measurements under changing contexts us-
ing the description logic based SIM-DL theory [5]. The long-term objective of
our research is a generic context model for similarity measurement, which repre-
sents the important characteristics of context. This envisioned model can then
be used for the development of similarity-based applications, particularly for the
assessment of the impact of different context parameters. Building such context
model requires a better understanding of the interaction between context and
similarity measurement.

The focus of this paper lies on observing and quantifying the change in the
results of a similarity measurement under different contexts. We introduce and
formalize the notion of impact for contexts: the more the context changes the
involved concepts, the larger its impact. The results of a similarity measurement
should directly depend on the impact the context has on the compared concepts.
In other words, if the same similarity measurement is performed under a series of
contexts with decreased impact, the change in the similarity values will converge
to 0. To enable such behavior, an impact measure for contexts is required. In the
following, we introduce such an impact measure, based on the SIM-DL theory
and a context model consisting of an internal context and a set of external
context rules. A scenario from geographic feature type lookup is used to test the
model with varying concept pairs and for different contexts.

The remainder of this paper is organized as follows: we first present related
work on semantic similarity measurement and context, followed by an intro-
duction of the SIM-DL theory, and the formal specification of context impact.
Section 3 describes the use case and its context formalization. In Section 4, the
resulting similarity and impact values are evaluated, and the results discussed.
Section 5 presents conclusions and gives directions for future research.

2 Similarity Measurement and Context

This section presents previous work on similarity measurement and context, and
introduces the SIM-DL theory. The context representation and the according
formalization of context impact are demonstrated.

2.1 Semantic Similarity Measurement

The notion of similarity was established in psychology to determine why and
how entities are grouped to categories, and why some categories are compara-
ble to each other while others are not [2, 6]. The main challenge with respect
to semantic similarity measurement is the comparison of meanings. A language
must be specified to represent the nature of entities and metrics are needed to
determine how (conceptually) close these compared entities are. While entities
can be expressed in terms of attributes, the representation of entity types is
more complex [7]. Depending on the expressivity of the representation language,
types are specified as sets of features, dimensions in a multidimensional space,



or formal restrictions specified on sets using various kinds of description logic.
Similarity is measured between entity types, which are representations of con-
cepts in human minds, therefore the results depend on what is said (in terms of
computational representation) about these types. This again depends on the em-
ployed representation language, and therefore most similarity measures cannot
be compared. Besides the question of representation, context is another major
challenge for similarity assessments. In general, meaningful notions of similarity
cannot be determined without defining in respect to what similarity is measured
[2, 8, 9].

Similarity measurements have been investigated as a method for information
retrieval in the semantic web over the last years [1, 10]. Stroulia and Wang [11]
developed a context-free similarity measure for Web services based on Web Ser-
vice Description Language specifications. Based on Tversky’s feature model [12],
Rodŕıguez and Egenhofer [3] built an extended model called Matching Distance
Similarity Measure (MDSM) that supports a basic context theory, automati-
cally determined weights, and asymmetry. Raubal and Schwering [13, 14] used
conceptual spaces [15] to implement models based on distance measures within
geometric space. Several measures [5, 16, 17] were developed to close the gap be-
tween ontologies described by various kinds of description logic, and similarity
theories that had not been able to handle the expressivity of such languages.

2.2 Similarity Theory: SIM-DL

SIM-DL [5, 18, 19] is an asymmetric and context aware similarity measurement
theory used for information retrieval within an ontology (or several ontologies
using the same shared vocabulary [20]). An early implementation of SIM-DL as
DIG-compliant [21] server is available at http://sim-dl.sf.net. The latest version
supports comparison between concepts specified using the expressive description
logic ALCHQ [19].

In SIM-DL, similarity between concepts in canonical form [5, 22] is measured
by comparing their definitions for overlap, where a high level of overlap indi-
cates high similarity and vice versa. In description logic (complex) concepts are
specified based on primitive concepts and roles using language constructors such
as intersection, union, and existential quantification. Hence, similarity is defined
as a polymorphous, binary, and real-valued function X × Y → R[0,1] provid-
ing implementations for all language constructs offered by the used description
logic. The overall similarity between concepts is the normalized (and weighted)
sum of the single similarities calculated for all parts (i.e., superconcepts) of the
concept definitions. A similarity value of 1 indicates that the compared concepts
cannot be differentiated, whereas 0 implies total dissimilarity. As most feature
and geometric approaches, SIM-DL is a asymmetric measure, i.e. the similarity
sim(Cs, Ct) is not necessarily equal to sim(Ct, Cs). The comparison of two con-
cepts depends therefore not only on their descriptors but also on the direction in
which both are compared. Further details on SIM-DL and the involved similarity
functions are given in [5, 19].



2.3 Previous Work on Context

Context has been investigated from the perspectives of different research areas
such as ubiquitous computing, interoperability, automatic metadata generation
and web search. Accordingly, any definition of context largely depends on the
field of application1. Concerning research on context for similarity measurement
[3–5], existing context definitions are often tailored to specific similarity theories,
and the context is mostly used to select the domain of application, i.e. a set of
concepts that is taken into account for the similarity measurement. Moreover,
context is used to assign weights to (parts of) the different concepts or instances
within the domain of application. To clarify what we refer to as a similarity
measurement’s context, we use the following definition from [9]:

Definition 1. A similarity measurement’s context is any information that helps
to specify the similarity of two entities more precisely concerning the current
situation. This information must be represented in the same way as the knowledge
base under consideration, and it must be capturable at maintainable cost.

While capturability and cost are not relevant for this research, it is important
that context only refers to such information that has an impact on the similarity
measurement. Furthermore, it must be represented in the same way as the given
knowledge base. For reasons of simplicity, we assume here that the context only
refers to parts of the knowledge base at hand, as described in the following
section.

2.4 Context and Impact Specification

The domain of application alone is not always sufficient to reflect the context of
a similarity measurement; for example, a domain of application, such as trans-
portation, cannot be used to specify that, by law, it is not allowed for trucks
to drive on the German Autobahn on Sundays—hence, an external rule is re-
quired that removes the superconcept NavigableByTrucks from the Autobahn
concept on Sundays. Accordingly, we define a context K as a combination of in-
ternal and external context (eq. 1): The internal context cint is a concept which
specifies the domain of application, i.e. all concepts subsumed by cint, such as
NavigableByTrucks. The external context is a set of rules R that allows for the
modification of the concepts selected via cint. Every rule consists of a condition
that specifies the circumstances under which the rule is activated2, a number of
modifying concepts cm, and the affected concepts ca to which these modifications
apply (eq. 2). Every modification either adds (+) a superconcept to the affected
concepts by intersection, or removes it (−). In the special case where a negated
superconcept is present, and the same (non-negated) superconcept is added via

1 See [23] for an overview of different research areas investigating context, and the
according definitions.

2 A mechanism for the automatic selection of the appropriate rules R based on the
conditions is required for an implementation, but out of scope for this paper.



+, the negation is overridden. Note that these changes are only temporary and
revoked after the similarity measurement.

K = 〈cint, {R1, ..., Rn}〉 (1)

R : condition −→ 〈{±cm1 , ...,±cmn
}, {ca1 , ..., can

}〉 (2)

To allow statements about the impact of a context on a similarity mea-
surement, we introduce a formal measure that quantifies this impact (eq. 3): A
context’s impact on a similarity measurement is defined as the overall change the
corresponding context rules cause to the search- and target concepts cs, ct. For
every modifying concept cm, the absolute change is quantified in terms of how
many of the superconcepts are changed (added or removed) in cs or ct. Beyond
this, the kind of change is reflected: if the application of cm makes cs and ct more
similar, the absolute value is counted positive; if it makes them less similar, the
value is counted negative. Whether a single cm is positive or negative is deter-
mined according to Table 1, which lists all possible combinations for adding or
removing superconcepts, depending on whether they are already part of cs or ct

(or both). The combined measure (eq. 3) takes into account that a rule which
makes two concepts more similar, and one which makes them less similar, may
compensate for each other if both appear in the same context. The outcoming
impact measures range from 0, where the concepts under consideration are not
changed, to 1, where all of the original superconcepts are removed.

Imp(K, cs, ct) =
∑ ±cm

|{ca|ca w cs t ct}|
(3)

Table 1. Possible combinations of adding or removing superconcepts from search con-
cepts, and target concepts respectively. The contents of the table show the development
of similarity under the preconditions given in the header; an increase in similarity is
marked +, decrease is marked −, no change by 0.

cm = cs, cm = ct cm = cs, cm 6= ct cm 6= cs, cm = ct cm 6= cs, cm 6= ct

+cs 0 0 + −
+ct 0 + 0 0

−cs − + 0 0

−ct − 0 0 0

+cs, +ct 0 + + +

+cs,−ct − 0 − −
−cs, +ct − + 0 0

−cs,−ct − + 0 0

As mentioned in the introduction, the results of a similarity measurement
should intuitively depend on the impact the context has on the compared con-
cepts: when the context’s impact increases, the change in the measurement’s



result should also increase. In other words, if the same similarity measurement
is performed under a series of contexts with decreased impact, the change in the
similarity values should converge to 0. The specification of this behavior (eq. 4)
requires a standard context Kstd, consisting of totality (i.e. the whole ontology,
>) as the internal context and without external context (i.e. without any rules):
〈>, {∅}〉.

lim
Imp(RK)→0

simK(a, b) = simKstd
(a, b) (4)

3 Use Case: Geographic Feature Type Lookup

In this section, we present an application scenario involving a feature type on-
tology. Different geographic feature types, as represented in the Web Ontology
Language (OWL), are compared under different contexts.

Fig. 1. Snapshot of the feature type ontology (see http://sim-dl.sf.net/downloads/).

3.1 Feature Type Ontology

Gazetteers are place name directories that make use of type lookup function-
ality to determine a geographic feature’s type, such as Road, Country or City.
The feature types are often classified in semi-formal feature type thesauri. How-
ever, similarity measurement among different feature types requires a formal
description of the types. In the following, we refer to a feature type ontology for
hydrographic features (figure 1) that was created based on the Alexandria Dig-
ital Library Feature Type Thesaurus3. Once complete, such an ontology allows
3 http://www.alexandria.ucsb.edu/gazetteer/FeatureTypes/ver070302/index.htm.



for similarity-based queries to a semantic geo-webservice [19]. Since any complex
similarity tasks build upon the comparison of concept pairs, we use SIM-DL and
the context definition presented in section 2.4 to measure similarities between
River and Lake, Lake and Reservoir, Canal and River, and between Reservoir
and Canal.

3.2 Contexts within the Scenario

The internal context cint is set fixed to Hydrographic for the use case. We in-
troduce a set of context rules that can be combined to different contexts4; for
example, R1 states that seas and lakes are not navigable during a storm, whereas
R4 states that it is allowed to navigate in reservoirs in the case of an emergency:

R1: Storm −→ 〈{−Navigable}, {Sea, Lake}〉
R2: Flooding −→ 〈{−Linear}, {River, Channel, IrrigationDitch}〉
R3: Night-time −→ 〈{−Navigable}, {Canal}〉
R4: Emergency −→ 〈{+Navigable}, {Reservoir}〉
Based on R1-R4, we define the following scenarios referring to different situ-
ations such as emergency at night (K1), storm at night (K2) and stormtide (K3):

K1 = 〈Hydrographic, {R3, R4}〉
K2 = 〈Hydrographic, {R1, R3}〉
K3 = 〈Hydrographic, {R1, R2}〉

4 Calculation of Context Effects and Discussion

In this section, we calculate and discuss the similarity and impact values for the
example search and target concepts as well as context scenarios presented above.

4.1 Calculation with SIM-DL and External Context

Similarity in SIM-DL is calculated as the number of superconcepts the target
concept ct shares with the search concept cs, divided by the number of super-
concepts of cs for standardization. For example, the similarity of River (cs) to
Lake (ct) is 3

6 (0.5, see first line of results in table 2), as River is represented by
6 superconcepts, of which Lake shares 3. This calculation is valid under Kstd; if
the context changes, the similarity may also change. For example, K2 removes
the superconcept Navigable from Lake, so that there are only two common su-
perconcepts left and similarity changes to 2

6 (0.33). On the other hand, K1 does
not affect the similarity of River to Lake because these concepts are not part of
R3 and R4.

All similarity results in table 2 are also annotated with the impact values as
calculated according to eq. 3. For example, the impact of K2 on the similarity
4 For reasons of readability, we only use combinations of two context rules in this

paper; however, an arbitrary number of rules can be combined in principle.



of River to Lake is − 1
6 (−0.17), since one of the 6 superconcepts of River t

Lake is removed. The impact is negative, because a superconcept is removed
from ct which is a superconcept of both cs and ct, resulting in a negative im-
pact on the overall similarity (see first column, fourth line in table 1). Table 2
gives an overview of all similarity and impact values for the concept pairs under
consideration.

Table 2. Similarity results for the three different external contexts. The internal con-
text was set fixed to Hydrographic.

Search concept Cs Target concept Ct K1 K2 K3 Kstd

River Lake 0.5 0.33 0.4 0.5

Impact 0 -0.17 -0.03 0

Lake River 0.6 0.5 0.5 0.6

Impact 0 -0.17 -0.17 0

Lake Reservoir 0.8 0.75 0.75 0.6

Impact +0.17 +0.17 +0.17 0

Reservoir Lake 0.8 0.6 0.6 0.6

Impact +0.17 0 0 0

Canal River 0.75 0.75 0.6 0.8

Impact -0.14 -0.14 -0.14 0

River Canal 0.5 0.5 0.6 0.66

Impact -0.14 -0.14 -0.17 0

Canal Reservoir 0.38 0.38 0.3 0.3

Impact 0 +0.17 0 0

Reservoir Canal 0.5 0.3 0.3 0.3

Impact +0.17 0 0 0

4.2 Discussion of Results

The similarity values produced by SIM-DL using the combined context model
introduced in section 2.4 generally appear plausible. For example, sim(Lake,
Reservoir) increases when the Reservoir becomes Navigable (K1), or if the Lake
is not Navigable (K1, K2). Note that K2 and K3 do not affect the similarity
in the inverse direction, since the according rule R1 only makes the Lake not
navigable, i.e. the rule removes a superconcept from cs that did also not match
ct before the rule was applied, therefore there is no change. It must be pointed
out that leaps in the similarity values under different contexts, such as in the
comparison of Reservoir and Lake, are for the most part due to the small number
of concepts contained in the ontology: since every concept is only described by a
small number of superconcepts, every modification to this set of superconcepts
causes comparably large changes in the similarity values. The observations made
in this paper need to be verified for more complex ontologies in the future.



Concerning the calculation of the impact values, the behavior as described in
eq. 4 cannot be observed. While the tendency for the impact is generally correct,
the actual impact value does not correlate with the corresponding change in
similarity. For example, K1 has an impact of +0.17 on sim(Reservoir, Canal),
as shown in the last line of table 2. The according similarity value increases by 0.2
with respect to the same comparison under Kstd. At the same time, sim(River,
Lake) decreases by 0.1 under K3, where the corresponding impact value is as
low as −0.03. These results point to the fact that the impact model introduced
in section eq. 3 may be too loosely coupled to the similarity theory.

5 Conclusions and Future Work

This paper has introduced a method, which quantifies the impact of context
on the results of semantic similarity measurements. SIM-DL produces plausible
results, even for ontologies that use only a small number of primitives for concept
description. The separation between internal and external context allows for
the addition of conditional rules that cannot be expressed within the ontology.
The notion of context impact presented in this paper, however, does not fully
correspond to the expected behaviour. Although the general tendency of the
impact values corresponds to the trend of the change in similarity values, the
quantification of this change is not yet reflected in the impact value. To solve this
issue, further research on different strategies for impact specification is required.
For example, knowledge about individuals (via assertions) [16] could be used to
make more precise statements about the impact of a given context.

Beyond this, the limitation of the current model to the methods for adding
and removing concepts needs to be enhanced by more sophisticated ways of as-
signing weights to the superconcepts. This would allow for rules such as “Glaze
−→ 〈{Navigable : 0.3}, {Road}〉”. This weighting would also allow for resolu-
tion of contradicting rules in the same context—a case that cannot be handled
so far. To allow such rules, methods for the determination of the weights and the
corresponding application rules are needed. Moreover, future work should focus
on how the developed strategies can be generalized and transferred to other con-
cept representations and similarity theories. The behavior observed for concept
pairs in this paper also needs to be compared to similarity rankings and tested
for cognitive plausibility in a human subjects test.
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