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Abstract. For an autonomous agent, performing a task in a spatio-temporal 
environment often requires interaction with other agents. Such interaction can 
be initiated by ad-hoc collaborative planning and decision-making, which then 
leads to physical support on site. On-site collaboration is important for a va-
riety of operations, such as search-and-rescue or pick-up-and-delivery. Tasks 
are performed through sequences of actions, and agents perceive possibilities 
for these actions in terms of affordances from the environment. Agent colla-
boration therefore requires the communication of affordances between agents 
with different capabilities. This paper introduces a spatio-temporal model for 
the decentralized decision-making of autonomous agents regarding on-site 
collaboration. Based on Janelle’s time-geographic perspective on communica-
tion modes, we demonstrate that different task situations lead to different spa-
tio-temporal constraints on communication, involving both physical presence 
and telepresence. The application of such constraints leads to an optimized 
message distribution strategy and therefore efficient affordance communica-
tion with regard to maximizing support in performing a given task. 

1 Introduction 

Performing a task in a spatio-temporal environment often involves collabora-
tion between various agents. Examples include rescue teams in emergency re-
sponse, intelligent robots supporting humans in elderly care, or ride-sharing 
with clients seeking hosts for transportation. In order to identify potential hel-



280      Martin Raubal, Stephan Winter 

pers, agents need to communicate their tasks and needs to others. Such com-
munication and subsequent decision-making involves at least three different 
perspectives: The spatio-temporal view includes issues such as the distribu-
tion of helping agents in space, the urgency of solving a task, and the task lo-
cation. The social point-of-view deals with the willingness of other agents to 
cooperate, and also involves institutional and legal constraints regarding agent 
cooperation. The technical level tackles issues related to the communication 
infrastructure. Within the framework of peer-to-peer communication, these 
perspectives can be viewed as different network levels. Previous research in 
the area of agent collaboration has focused on the social and technical levels. 
In this paper we propose a spatio-temporal model towards collaborative deci-
sion-making, which integrates all three network levels. We hypothesize that 
the integration of spatio-temporal constraints within a model of agent collabo-
ration makes an optimized message distribution possible and therefore results 
in efficient communication leading to optimal support in performing a task. 

The presented model is based on the communication of affordances be-
tween agents in a network of peers. The use of affordances allows us to con-
sider action possibilities, which can be formally represented in a functional 
framework. The model accounts for the fact that different task situations—
with respect to urgency, risk, and location—result in different time-
geographic communication constraints. Negotiation between client agents and 
potential helping agents is represented within a request-offer-choice process, 
which includes affordance-based similarity measurement that takes agent ca-
pabilities into account. 

Section 2 presents related work in the area of agent planning, peer-to-peer 
communication, and agent collaboration. Section 3 introduces the individual 
components and theories, on which the model is founded. In Section 4, we 
develop the collaborative agent process model, detailing the negotiation 
process. Section 5 applies this process model to a hypothetical emergency 
scenario. Section 6 discusses the application. The final section presents con-
clusions and directions for future research. 

2 Related work 

2.1 Agent planning 

According to the heterogeneity of the involved fields there is no common 
agreement about a definition of the term agent [1]. An agent can be anything, 
such as a robot that perceives its environment through sensors and acts upon it 
through effectors [2]. More specifically, agents are considered computer sys-
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tems that are situated in some environment and can act autonomously [3]. 
Multi-agent systems (MAS) depict systems as a combination of multiple auto-
nomous and independent agents and are therefore well suited to simulate col-
laboration of different actors.  

Agents can be represented as functions that map percepts to actions. Ab-
stract models of agents distinguish between purely reactive agents, agents 
with subsystems for perception and action, and agents with state. These ab-
stract models can be implemented in different ways, depending on how the 
decision-making of the agent is realized. Here, we consider utility-based 
agents [2], which have valuation functions that allow them to compare be-
tween different action sequences to achieve a goal. Such functions map world 
states to real numbers, which describe associated degrees of happiness. 

Agent-based modeling and simulation has gained much popularity in the 
field of Geographic Information Science due to the disaggregate nature of 
agents and their ability to move across different spatial scales and representa-
tions [4]. Application scenarios include the modeling of urban phenomena [5], 
pedestrian movement [6], and shared-ride trip planning [7]. 

Planning is the development of a strategy for solving a task. For an agent, a 
plan is an action sequence, where each action to be performed depends on 
some pre-conditions. Every action causes effects or post-conditions that affect 
or trigger subsequent actions in the chain. The plan terminates when the goal 
is reached. A planner in Artificial Intelligence takes three input variables: a 
representation of the initial state of the world, a representation of the intended 
outcome (goal), and a set of possible actions to be performed to reach the 
goal. Formally, a plan is a triple <O, I, AC(p, q)> [8] where O is the intended 
outcome, I the initial state of the world, and AC a set of actions—each defined 
via pre- and post-conditions p, q. After executing actions the state of the 
world is changed, which impacts the future plan, therefore planning is a non-
linear process. One of the main challenges within dynamic environments is 
that one can neither assume complete knowledge nor the availability of ob-
jects and other agents supporting certain actions. 

2.2 Peer-to-peer communication 

Peer-to-peer (P2P) communication is ad-hoc communication between distri-
buted agents, without involvement of a dedicated server providing communi-
cation services to its clients, or any other hierarchic communication infra-
structure. It enables mobile agents to collaborate in an ad-hoc manner 
provided that they agree on a communication protocol. In a P2P communica-
tion network each node is of equal importance. Nodes can take the role of a 
communication client, receiving services from other nodes, but they are also 
service providers for the other nodes. P2P communication networks are tran-
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sient in nature, with nodes entering and leaving the network freely and fre-
quently. 

A special class of P2P communication is characterized by mobile nodes. 
For this class the communication is realized wirelessly by radio, which is 
short-range, due to the typically limited on-board energy resources. This 
means connectivity in mobile networks depends on the physical distance of 
nodes, which is constantly changing. Communication over larger distances re-
lies on message forwarding and routing [9, 10]. 

2.3 Agent collaboration 

In a MAS, autonomous agents may cooperate with others to achieve their 
goals. How to achieve meaningful coordination is a difficult issue and re-
quires interdisciplinary work within the recently established field of computa-
tional cognitive social science [11]. Agent collaboration is based on cognitive 
architectures, representing and explaining cognitive processes of individual 
agents during the performance of tasks. The most prominent architectures are 
ACT-R [12] and Soar [13]. The CLARION cognitive architecture [14] ex-
tends cognitive modeling to social simulation. It accounts for agents’ socially 
oriented goals and bases agent cooperation on the fact that social interaction 
between agents is made possible through their understanding of each other’s 
motivations. 

Previous research has focused on technical aspects of P2P collaboration 
[15] and hierarchical multi-agent models integrating knowledge-based com-
munication, such as for the RoboCupRescue1 simulation [16]. Luo and Bölöni 
[17] presented a game-theoretic model for the canonical problem of spatio-
temporal collaboration with the goal of optimizing individual benefits. A typi-
cal application of intelligent agent collaboration is elderly care. For example, 
the PEIS (Physically Embedded Intelligent Systems) ecology is a network of 
heterogeneous smart devices that ranges from simple gadgets, such as refrige-
rators with sensors, to sophisticated mobile robots or even humans [18]. These 
intelligent entities communicate and collaborate with each other by providing 
information, and combining physical and virtual functionalities to perform 
complex tasks, such as supporting human inhabitants in their flats. Shared-
ride trip planning is an urban transportation application of ad-hoc agent colla-
boration: client agents representing customers, e.g., pedestrians, seek trans-
portation by host agents representing vehicles, e.g., public transportation ve-
hicles, in an ad-hoc manner [7, 19]. The goal of collaboration is to bring 
clients to their destinations, for some host benefits. In typical scenarios mul-
tiple clients compete for free capacity and multiple hosts compete for clients. 

                                                      
1 http://www.robocup.org/ 



A Spatio-Temporal Model Towards Ad-Hoc Collaborative Decision-Making      283 

Recently, it was demonstrated how decentralized time geography can be ap-
plied to ad-hoc collaborative agent planning [20]. Agents performed a spatio-
temporal analysis based on local knowledge in a distributed environment, the-
reby evaluating whether they can independently contribute to physical support 
at a specific site by a specified time. Experiments in a multi-agent simulation 
framework investigated the impact of different combinations of agent density 
and communication radius, as well as behavioral strategies on task perfor-
mance. 

This paper takes previous work a step further by explicitly considering the 
interaction of mobile agents in terms of a combination of spatio-temporal, so-
cial, and communication network levels. The goal is to develop a general and 
comprehensive model of spatio-temporal decision-making for ad-hoc agent 
collaboration. We specifically investigate the cooperation process, which in-
cludes communication of affordances between agents. Such communication 
enables clients and service providers to form better decisions by taking the in-
dividual capabilities of agents into account. The model also provides a way to 
determine the influence of task dimensions and spatio-temporal constraints on 
the efficiency of communication. 

3 Spatio-temporal framework of collaborative decision-
making 

This section specifies different task dimensions, whose values lead to spatio-
temporal constraints for communication. We start by introducing affordances, 
which are communicated by the collaborating agents, and a recently proposed 
similarity measure for them. Time geography serves as the basis for modeling 
the spatio-temporal decision-making process. 

3.1 Affordance representation and similarity 

The theory of affordances [21] is based on the tenet that agent and environ-
ment form an inseparable pair. Affordances have to be described relative to 
the agent. For example, a chair’s affordance ‘to sit’ results from a bundle of 
attributes, such as ‘flat and hard surface’ and ‘height’, many of which are rela-
tive to the size of an individual agent. Norman [22] recasts affordances as the 
results from the mental interpretation of things, based on people’s past know-
ledge and experiences, which are applied to the perception of these things. 

In order to supplement Gibson’s theory of perception with elements of 
cognition, situational aspects, and social constraints, Raubal [23] presented an 
extended theory of affordances suggesting that affordances belong to three 
different realms: physical, social-institutional, and mental. This distinction 
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was formally specified in a functional model [24]. The agent is represented 
through its physical structure, spatial and cognitive capabilities, and a goal. 
Physical affordances (Paff) for the agent result from invariant compounds—
unique combinations of physical, chemical, and geometrical properties—and 
the physical structure of the agent. Social-institutional affordances (SIaff) are 
created through the imposition of social and institutional constraints on physi-
cal affordances. Mental affordances (Maff) arise for the agent when perceiv-
ing a set of Paffs and SIaffs in an environment at a specific location and time. 
Affordances offer possibilities for action as well as possibilities for the agent 
to reason about them and decide whether to utilize them or not, i.e., mental af-
fordances. 

We specify an affordance A as a triple <O, E, {AC}> [25]. The outcome O 
is the change of world state after executing the actions AC with respect to ma-
nipulated entities of type E. Each action is represented by physical (ph) and 
social-institutional (si) constraints or pre-conditions, AC therefore being de-
fined as a set of actions {ac1(ph1,si1),..., acn(phn,sin)}. Constraints are tied to a 
certain action with respect to an entity, while the outcome is equal for all ac-
tions defined for the affordance A. An affordance can be utilized through sev-
eral actions, e.g., the move-ability affordance of a desk may include the ac-
tions carry and push. 

When communicating affordances between agents and evaluating whether 
an offered affordance is good enough compared to the requested affordance to 
help in solving a task, it is necessary to determine their similarity. Here, we 
apply a similarity measure for affordances [26], which uses the action and 
outcome specification from <O, E, {AC}>. Affordances are more similar the 
more similar their descriptors are. The overall similarity SimA between affor-
dances As and At is defined as the weighted sum for the individual similarities 
computed for actions (simAC) and outcomes (simO) (Equation 1). The former 
depend on the similarity values computed for their physical and social-
institutional constraints. 

SimA(As,At) = wac* 1/nS simAC + wo*simO; where  Sw =1     (1) 

3.2 Task dimensions 

Agents can perform tasks by utilizing various affordances. For example, to 
change a light bulb, an agent can move a chair below the light, step onto it, 
and change the bulb [27]. When planning how to solve a task, the agent must 
take several aspects into account. For the purpose of modeling spatio-
temporal collaborative decision-making, we consider the following task di-
mensions: collaboration, urgency, risk, and location. Table 1 describes and 
explains the possible values for each of them. 
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Table 1. Task dimensions with possible values and explanations. 

Task dimension Value Explanation 
Collaboration 0 Agent can solve task alone. 

1 Another agent needed to either solve task or 
support requesting agent in (sub)task. 

n More than 1 agent needed to solve task. 
Urgency immediate Immediate help required, values depend on con-

text, e.g., within 10 min. 
flexible Help required within reasonable time frame. 

Risk high Describes the inverse probability that the 
agent(s) will solve the task. medium 

low 
Location (x, y) Coordinate pair; default location for the task is 

the current location of the requesting agent. 

3.3 Spatio-temporal communication constraints 

Agents and resources are available at a limited number of locations for a li-
mited amount of time. Time geography defines the space-time mechanics of 
locational presence by considering different constraints [28]. The original 
time geography framework recognized the possibility of telepresence using 
electronic communication, although it received much less attention than phys-
ical presence. Time geography’s focus on time as a resource enabling activity 
participation has received explicit interest by researchers lately [29, 30]. It fits 
naturally to views of time as the major scarce resource in information econo-
mies and accelerated modern lifestyles [31]. 

Janelle [32] classified communication modes from a time-geographic pers-
pective. Table 2 summarizes classes based on their spatial and temporal con-
straints. Spatial constraints are either physical presence or telepresence, while 
temporal constraints are either synchronous or asynchronous. Synchronous 
presence (SP) is the communication mode of face-to-face (F2F) interaction. 
F2F requires coincidence in both time and space. Synchronous telepresence 
(ST) requires only coincidence in time. Asynchronous presence (AP) requires 
coincidence in space but not in time. Asynchronous telepresence (AT) does 
not require coincidence in space and time. 
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Table 2. Spatio-temporal communication constraints, based on [32] 

 Spatial  
Temporal Physical presence Telepresence 

Synchronous SP 
Face to face 

ST 
Telephone, instant messaging, 

radio, teleconferencing 
Asynchronous AP 

Refrigerator notes, hospital 
charts 

AT 
Email, fax, printed media, web 

pages 
 
The spatio-temporal communication constraints for agent collaboration de-

pend directly on some of the task dimension values. Constraints exist if colla-
boration ≥ 1 and they vary for different urgency values. If urgency = imme-
diate, then only SP and ST of other agents lead to potential help in solving a 
task, because if help comes after some time threshold, the utility for the re-
questing agent is zero. Take, for example, an emergency scenario where 
someone who cannot get out of a car that fell into a river, needs to be rescued. 
There is only a small critical time interval for survival. If urgency = flexible, 
then AP and AT may also be viable, depending on how much time the request-
ing agent has for solving the task. AP may lead to a higher risk because it is 
assumed that some other agent will come by the requesting agent’s location 
within a certain time interval and react to a posted message. In general, flexi-
ble task urgencies result in more choices and less constrained communication. 

4 Collaborative agent process model 

This section develops a high-level framework for ad-hoc negotiation of on-
site collaboration between agents. We allow for autonomous agents that fol-
low their individual goals, and only if they cannot reach them on their own, 
they ask peers for help. 

4.1 Communication for collaboration 

Agents use P2P communication to negotiate with each other for collaborative 
action. One defining parameter for the design of a negotiation procedure is the 
radio range, which is an issue in all P2P communication and depends on the 
protocol / platform. To expand the search range for help beyond the imme-
diate radio range, message forwarding strategies can be applied, e.g., within a 
specified search range pre-calculated by spatio-temporal relevance constraints 
[7]. We assume here that agents have sufficient energy for movement and 
physical work on board, and may even utilize internal mechanisms for battery 
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recharge. This allows them to broadcast anytime—in contrast to sensor net-
works, which are rigidly limited by their energy resources and communicate 
only in synchronized time windows. 

Negotiations within a search range require stable communication links in a 
potentially fragile communication network over the time of the negotiation 
process. This requirement makes the problem substantially different from 
simple message dissemination problems [9]. Robust negotiation strategies re-
quire negotiating over short distances and by immediate response. Also, in 
case a message gets lost, agents must be able to continue their work based on 
their current information. Negotiations can take different forms. One way is a 
client agent sending a request, interested agents responding with offers, and 
the client selecting and booking an offer. Another way is providers advertising 
their services, clients registering, selecting, and booking when needed. Only 
the prior form allows for synchronous communication, which facilitates ro-
bust negotiations. 

Figure 1 illustrates the negotiation process. The client initiating the com-
munication reaches four other agents within its radio range (dark gray). Since 
these agents are located within the search range (light gray), they re-broadcast 
the request once. Other agents receiving the request will also re-broadcast 
once if they are located within the search range. Some agents beyond the 
search range may have received the request, but since they are outside this 
range they ignore it. For example, for Agent 8 being within radio range of 
Agent 5 but outside the search range means that it receives the client’s request, 
but does not re-broadcast. Therefore, Agent 9, although within radio range of 
Agent 8, will not receive the request. In contrast, Agent 7 is within the search 
range but outside the radio range of any broadcasting agent and therefore does 
not receive the request. The request messages traveling through the communi-
cation network keep track of their broadcasting agents. This way, the message 
remembers the shortest route back to the client. 

Agent 1 is sufficiently close to be in synchronous co-presence (black circle) 
with the client and can start collaboration without delay. Agents 2, 3, and 4 
are in synchronous telepresence: they are able to communicate directly, but 
have to approach first before an interaction can take place. Agents that can on-
ly be reached by the client through mediating agents are in asynchronous tele-
presence, since communication can be delayed by the requirement to re-
broadcast sent messages. In situations with radio range ≥ search range asyn-
chronous telepresent agents do not exist. 
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Fig. 1. A client agent (triangle) requesting help via short-range radio and the emerg-
ing communication network 

4.2 The negotiation process 

This section models the individual steps of the negotiation process. We as-
sume that agents can communicate ad-hoc and make decisions based on utility 
functions. Accordingly, the focus is on communication and exploitation of 
spatio-temporal constraints and affordances. 

4.2.1 Client’s request 

A client initializes a negotiation process as soon as it is confronted with a task 
beyond its capabilities (collaboration > 0). The task focalizes the client’s per-
ceived affordances and enables it to create a plan. The client may discover the 
need for help by learning about the physical and social parameters of the task, 
or the individual actions involved in the plan. The parameters may be released 
from the object to be manipulated, or experienced by trial-and-error. At this 
time the client cannot judge whether a single or multiple collaborative agents 
are needed to solve the task because it does not know the capabilities of near-
by agents. However, the client is able to specify the urgency of performing the 
task. By setting an upper time limit the client implicitly defines a search range 
for helping agents. With these parameters a request can be formulated, con-
sisting of: 
• Message type: ‘request’ (tells other agents how to treat this message); 
• task location: client location by default; 
• search range: a time frame; 
• task: a set of <O, E, {AC}>. In this set of affordances the specific subtask 

the client needs help for has the highest weight. It is parameterized by the 
difference of learned properties of the subtask and the client’s own capa-
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bilities. If the client has experienced the properties by trial-and-error, the 
parameterization takes the form of an inequality, denoting that the value is 

• 

ge. Every forwarding agent appends its ID to 
the list of broadcasting agents. 

d affordances and come up with a suggestion. The agent’s offer con-

rdance: may be used by 

• 

dividual cases an offer 
may not reach the client due to a recently broken link. 

beyond its own capabilities; 
list of broadcasting agents: agent IDs, initialized by the client’s ID. 
The request is broadcasted by the client and re-broadcasted by other agents 

if they are within the search ran

4.2.2 Service provider’s offer 

Recipients of the request take the requested affordances and their parameters 
into account, as well as their own capabilities, duties (urgency of their own 
current tasks), and utility functions. An agent can formulate two types of of-
fers: (a) contributing to the specific affordances requested by the client, or (b) 
suggesting different actions to solve the task. For case (a), the simplest situa-
tion occurs if the agent can offer to utilize a requested affordance on its own. 
However, if the request contains a parameter specification in the form of an 
inequality or a value exceeding its capabilities, the agent can only offer help 
within the limits of these capabilities. If the agent cannot utilize the requested 
affordance, but a similar one, it can still offer this similar affordance. For case 
(b), the agent can apply the affordance similarity measure (Section 3.1) to its 
own store
sists of: 
• Message type: ‘offer’; 
• travel time distance to client; 
• offered parameterized affordance in terms of actions; 
• similarity value between offered and requested affo

client to estimate the risk with booking this agent; 
• list of agents leading back to client: reverted list of broadcasting agents; 

list of broadcasting agents: agent IDs, initialized by offering agent’s ID. 
Re-broadcasting of offers by other agents is conditional to their ID appear-

ing in the list of agents leading back to the client, and their ID not appearing 
on the list of broadcasting agents (to avoid multiple broadcasting). This strat-
egy assumes that the communication links available for the request are still in-
tact for the offers. While this is realistic in general, in in

4.2.3 Client’s choice and booking 

The client will compare the travel time distance specified in the offers with its 
task urgency, determine the similarity between offered and requested affor-
dances, and the amount of support offered. With its own utility function the 
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client is able to rank all incoming offers. The following cases can be distin-
guished: 
1. No offer arrived. The client can enlarge the search radius or change its plan. 
2. At least one offer is made matching the highest ranked affordance in the 

request. The client can choose either the nearest offering agent (high task 

that the weight re-

ordance may require revising the plan. 
a decision, it will formulate a booking message, 

of the cho-

 chain forward to the offering agent and their 
ID not appearing in the list of broadcasting agents. Booked agents will travel 
to the client’s location and help. 

al agents (Figure 3): Agents H1 and H2 are within radio range of Agent C; 
Agent H3 is within the search range; and Agent H4 is outside the search range. 

                                                     

urgency) or the agent with the largest capacity for this affordance (risk re-
duction). 

3. Offers rank other affordances higher than the requested affordance. The 
client can choose the offer with the most similar affordance, assuming 
compatibility in agent capabilities. Alternatively, it can choose the offer 
with the highest weight for one affordance, assuming 
flects the offering agent’s confidence in being helpful. Accepting other than 
the requested aff
Once the client has made 

which consists of: 
• Message type: ‘booking’; 
• booked affordance; 
• list of agents leading forward to the offering agent: reverted list 

sen offer’s broadcasting agents; 
• list of broadcasting agents: agent IDs, initialized by client’s ID. 

Re-broadcasting of requests by other agents is conditional to their ID ap-
pearing in the list of agents in the

5 Application scenario 

This section applies the model to a hypothetical emergency scenario involving 
a car that got hit by a tree (Figure 2). The client Agent C (car driver) tried to 
move the tree without success and is therefore requesting immediate help 
from other agents2 in the communication network. We consider four addition-

 
2 Our model is generic and deals with abstract agents. Here, we focus on the de-

scription of the collaboration process between software agents, whether the actors 
represent humans or not. 
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Fig. 2. A car driver finding his vehicle blocked by an obstacle contacts other agents to 
help remove the obstacle 

The client’s request consists of the following parameters (Section 4.2.1): 
[request; (34.42, -119.70); 15min; 
<O: hasPos (e, Pos(y)) & y≠x; E: tree; 
AC: carry (ph: hasPos (e, Pos(x)) & WeightKg (e, >30) & 
LengthM (e, >2))>; 
(C)] 

It contains the task location in the form of latitude/longitude coordinates and 
specifies a search range of 15 minutes. The move-ability affordance is 
represented through an outcome O (entity e must have a different position y 
compared to current location x), an entity type E, and one action specified by 
physical aspects ph. Due to its physical capabilities, Agent C can only carry 
trees with a maximum weight of 30kg and a maximum length of 2m. The re-
quested action (as part of the affordance) therefore exceeds these limits. After 
the outcome O, C initializes the list of broadcasting agents being the first 
sender. 

 
Fig. 3. Client Agent C with four potential service providers in the communication 
network 

All four additional agents receive the client’s request. H1 and H2 are in syn-
chronous telepresence, and receive the request directly. H3 and H4 are in asyn-
chronous telepresence (reached through mediating Agents H2 and H3). H2 is 
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occupied with its own task and therefore decides not to make an offer. The 
other three agents calculate the shortest path [33] to the task location. Only 
agents that can reach the task location within the specified time will make an 
offer. This results in H4 not making an offer. Thus, only H1 and H3 are making 
an offer to the client. Table 3 compares these offers. 

Table 3: Offers from Agents H1 and H3 back to the client 

Offer from Agent H1 Offer from Agent H3 
8min; 
AC: carry (ph:  
hasPos (e, Pos(x)) & 
WeightKg (e, ≤40) & 
LengthM (e, <1)); 
0.84; 
(H1, C); 
(H1); 

13min;
AC: lift (ph:  
hasPos (e, Pos(x)) & 
WeightKg (e, ≤800) & 
LengthM (e, [1,15])); 
1.00; 
(H3, H2, C); 
(H3); 

 
The computed travel times from the locations of H1 and H3 to the task loca-

tion are 8 and 13 minutes. With respect to the parameterized affordance, two 
different actions—carry and lift—are offered. O and E are equal to the 
client’s request (sim = 1) and therefore omitted in the table. The individual 
components of each action are used to calculate overall affordance similarity 
according to the measure introduced in Section 3.1. Because the client’s re-
quest specifies minimum agent capabilities for carrying trees in terms of 
weight and length, every offer equal to or exceeding this limit results in a si-
milarity value of 1, e.g., WeightKg (e, >30) and WeightKg (e, 
≤40), and 0 otherwise. Final values are calculated according to Equation 1 
with both weights set to 0.53. 

The offer broadcasted by H1 is received by C directly, and no other agent 
receiving the message takes an action. In contrast, C is not in the radio range 
of H3, but H3 specified that H2 should forward its offer. Agent C then eva-
luates the incoming offers according to a utility function taking various para-
meters, such as task urgency and risk, into account. In our example, the client 
puts a higher weight on agent capacity for solving the task and establishes the 
ranking (H3, H1). A booking message is therefore sent to H3. 

                                                      
3 For H1, simAC results from the similarities of hasPos, WeightKg, and 

LengthM, i.e., (1+1+0)/3 = 0.67. Equation 1 then evaluates to SimA = 
0.5*0.67+0.5*1 = 0.84. 
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6 Discussion 

Compared to an uninformed or brute-force approach such as flooding (every 
sensor receiving a message broadcasts this message again), the application 
shows that integrating spatio-temporal constraints within a model of agent 
collaboration in a P2P network leads to an optimized message distribution 
among agents and therefore to more efficient support in performing a task. 
During brute-force search messages are re-broadcasted to every other node 
within the communication range and this process is repeated consistently. In 
our case, the optimization of message distribution results from the constrained 
search range based on time-sensitive tasks. Messages are only sent to potential 
collaborators, resulting in a reduction of overall network traffic and saving 
bandwidth. Agents (H4 in the application scenario), whose travel time to the 
task location exceeds a given limit, do not make offers and therefore further 
reduce the number of messages. Efficient task support results from knowing in 
advance the helping agents’ capabilities. In addition to similarity values be-
tween requested and offered affordances, and the client’s utility-based deci-
sion-making, this is a major step towards spatio-temporal efficiency in agent 
collaboration. 

The client found through trial-and-error that its physical capabilities were 
insufficient for moving the tree. As a result, some of the affordance parame-
ters could only be specified in terms of lower limits, e.g., LengthM (e, 
>2). By specifying exact capability values, such as LengthM (e, 4.50) 
an interval rather than a Boolean scale could be used to calculate more precise 
similarity values, e.g., 4.49 is more similar to 4.50 than 4.35. It is important to 
note though that the final similarity values are not interpreted on an individual 
basis, but establish an order from most to least similar. In our scenario, social-
institutional (si) constraints were only implicitly covered—Agent H2 did not 
want to make an offer—and did not enter the similarity function. As shown in 
[26], the similarity function for actions simAC can easily be extended to 
represent these aspects, such as lower willingness to help during nighttime 
versus daytime. 

Similar to this application, ad-hoc shared-ride services realize the general 
model of decision-making demonstrated here. The decision model as pre-
sented in [7] also relies on a negotiation process of client requests, host offers, 
and clients’ selection and booking. In light of the present general decentra-
lized decision model, their application-specific negotiation can be interpreted 
as being based on affordances. Clients in the shared-ride scenario formulate 
their request by specifying their current and desired locations. They perceive 
the affordance of moving vehicles with free transportation capacity, and ac-
cordingly, specify in their request the task ‘move me to a specific location’. 
Hosts can interpret this task directly by their capabilities to offer rides, de-
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pending on their free seats and directions. The other aspects of the general 
model of decision-making are also present: Urgency is known, a search radius 
is specified by the client, and the clients’ utility function consists of an optim-
al path algorithm for their own trip. Therefore, protocols and algorithms in 
shared-ride services can be expressed by the presented model. 

7 Conclusions and future work 

In this paper we have specified a high-level framework for ad-hoc communi-
cation between agents that negotiate for collaboration to perform a task. The 
underlying model accounts for spatio-temporal constraints, leading to efficient 
communication and task support. The agents’ decision-making is based on af-
fordances, to be able to adapt to any context and task. The framework was 
demonstrated through an application, which gave insight into how the affor-
dance specification enables clients and service providers to form their deci-
sions. 

The presented work suggests several directions for future research: 
• The process model needs to be implemented and tested in different real-

world application scenarios. Decentralized ride-sharing provides one possi-
ble scenario, but there are many others, such as emergency response and 
various interactions between humans and robots, e.g., in elderly care. 
Agent-based simulations will provide insights into complexity issues and 
real-world applicability of spatio-temporal communication constraints. 

• The demonstrated application includes only a small number of agents, 
which leads to the question of scalability. We expect that our approach will 
scale due to its distributed architecture, local processing, and local evalua-
tions of relevance. Future simulations will address this question. 

• The similarity measure for affordances needs to be refined and extended. 
Strategies for combining offers from different service providers (collabora-
tion > 1) must be developed, leading to the classic problem of combinatori-
al optimization, i.e., determining the set of agents with the largest total 
attribute value. This becomes even more complex when affordances and 
their parts cannot simply be added up, e.g., carry + lift. Determining the 
similarity between affordances specified through different actions will re-
quire the use of action / affordance ontologies. 

• There are several ways of specifying a client’s utility function. Depending 
on the context, such function may focus on temporal aspects, risk estima-
tions, and social and institutional issues. In addition, economic models will 
be needed to balance the costs of the service providers with benefits. 
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