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Abstract. Measuring semantic similarity among concepts is the core method 
for assessing the degree of semantic interoperability within and between 
ontologies. In this paper, we propose to extend current semantic similarity 
measures by accounting for the spatial relations between different geospatial 
concepts. Such integration of spatial relations, in particular topologic and metric 
relations, leads to an enhanced accuracy of semantic similarity measurements. 
For the formal treatment of similarity the theory of conceptual vector spaces—
sets of quality dimensions with a geometric or topologic structure for one or 
more domains—is utilized. These spaces allow for the measurement of 
semantic distances between concepts. A case study from the geospatial domain 
using Ordnance Survey's MasterMap is used to demonstrate the usefulness and 
plausibility of the approach. 

1   Introduction 

Successful communication of concepts depends on a common understanding between 
human beings and computer systems exchanging such information. In order to 
achieve a sufficient degree of semantic interoperability it is necessary to determine 
the semantic similarity between these concepts. Various approaches to measure 
semantic similarity between concepts exist and often such calculations of semantic 
distances are based on taxonomic and partonomic relations. When determining 
semantic similarity between geospatial concepts it is important to account for their 
spatial relations in the calculation process. All geospatial objects have a position in 
space with regard to some spatial reference system and therefore a spatial relation to 
each other. Spatial relations are also central characteristics on the conceptual level. In 
this paper, we present an approach of integrating spatial relations into semantic 
similarity measurements between different geospatial concepts. Such integration 
improves the quality of the measurements by enhancing the accuracy of their results. 

For the formal representation of concepts and the calculation of their semantic 
similarities we utilize Gärdenfors' idea of a conceptual space—a set of quality 
dimensions within a geometric structure [1]. Such a representation rests on the 
foundation of cognitive semantics [2], asserting that meanings are mental entities, i.e. 
mappings from expressions to conceptual structures, which themselves refer to the 
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real world. They therefore allow us to account for the fact that different people have 
different conceptualizations of the world. 

A case study, in which a customer specifies query concepts based on a shared 
vocabulary and wants to extract similar concepts from the database of a mapping 
agency, is used to demonstrate the importance of accounting for spatial relations in a 
real scenario. It is shown that without the inclusion of spatial relations, the customer 
is presented with answers which do not fully match her requirements. 

2   Related Work 

Most knowledge representations use a definitional structure of concepts to describe 
their semantics: Concepts are specified by necessary and sufficient conditions for 
something to be its extension. The nature of these conditions is distinct: Properties 
(features, dimensions) describe the characteristics of concepts, while semantic 
relations describe concepts through their relationships to other concepts.  

The following section describes the formalization of natural-language spatial 
relations used for the description of geo-concepts. In section 2.2 we give an overview 
of semantic similarity measures and evaluate how they include relations. The final 
section describes conceptual spaces, the representational model used in this paper. 

2.1   Formalization of Natural-Language Spatial Relations 

Describing a concept with relations closely resembles the human way of structuring 
knowledge: According to the associationist theory humans memorize knowledge by 
building relations between concepts. The importance of spatial relations arises from 
the geographic reference of most of our data. All geo-objects have a position in a 
spatial reference system and each pair of geo-objects is spatially related. The same 
goes for the conceptual level: due to their functional dependence the geo-concept 
'floodplain' is always situated near a water body. We consider spatial relations to be 
fundamental parts of the semantic description of geo-data. 

While formal spatial relations—topologic [3], distance [4] and direction relations 
[5]—have well defined semantics, natural-language spatial relations have more 
complex semantics and often imply more than one type of formal spatial relation. 
People are more familiar with using spatial terms in their natural languages, but 
systems use definitions based on a computational model for spatial relations. To 
bridge this gap Shariff et al. developed a model defining the geometry of spatial 
natural-language relations following the premise topology matters, metric refines [6]. 

The computational model for spatial relations [7, 8] consists of two layers: first it 
captures the topology between lines and regions based on the 9-Intersection model. 
The second layer analyzes the topologic configuration according to a set of metric 
properties: splitting, closeness and approximate alongness. 

Splitting determines the way a region is divided by a line and vice versa. The 
intersection of the interior, exterior or boundary of a line and a region is one- or two-
dimensional. In the 1-D case the length of the intersection is measured, in the 2-D 
case the size of the area. To normalize length and area, they are divided either by the 
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region's area or the length of the line or the region's boundary. Closeness describes the 
distance of a region's boundary to the disjoint parts of the line. It distinguishes 
between Inner/Outer Closeness and Inner/Outer Nearness. Approximate alongness is a 
combination of the closeness measures and the splitting ratios: it assesses the length 
of the section where the line's interior runs parallel to the region's boundary. 

To capture the semantics of geo-objects with spatial relations it is important to use 
natural-language terms, because they are plausible for humans. Equally important is 
to have an unambiguous, formal interpretation of these natural language terms. The 
computational model by Shariff et al. provides a set of natural-language spatial 
relations with a formalization verified by human subject tests [8]. In our investigation 
we use a subset of those natural-language terms, which can be applied within the case 
study. People's choice of spatial relations to describe two objects differs depending on 
the meaning of objects, their function, shape and scale. We consider only hydrological 
geo-objects within a large-scale topographic map for defining spatial relations and do 
not take into account specific semantics of relations depending on the object's 
meaning, function, or shape. 

2.2   Semantic Similarity Measurement 

Geometric representations model objects within a multidimensional space: Objects 
are described on dimensions spanning a vector space [9]. Dimensions are separable 
into attribute-value pairs: terms that can be evaluated to a value with different, 
mutually exclusive levels, e.g. the flow speed of a river is either slow, middle or fast. 
Geometric representations evolved from multidimensional scaling (MDS) [10, 11]: 
while MDS starts from similarity judgments and determines the underlying 
dimensions, geometric models represent objects on pre-known dimensions and 
convert their spatial distance, interpreted as a semantic distance, to a similarity value. 
Similarity measures in geometric models are metric, though various extensions to 
account for non-metric properties exist (e.g. Distance Density Model [12], Relative 
Prominence Model [13]). Geometric representations use only properties for semantic 
description. It is not possible to describe relationships between objects or concepts. 

Feature representations model concepts as sets of features. Features are unary 
predicates, e.g. a concept 'water body' has the feature 'flowing' or ⌐ 'flowing'. The 
Feature Matching Model proposed by Tversky [14] is a nonmetric similarity measure 
comparing two concepts as two sets of features: common features increase and 
distinct features decrease similarity. It was also applied in other similarity measures 
such as the Matching-Distance Similarity Measure [15, 16]. In feature representations 
the description of concepts is limited to atomic features. Relations between objects 
cannot be represented in a structured way: some approaches construct compound 
features, but compound features do not allow for structured comparison, e.g. no 
similarity would be detected between 'nearRiver' and 'veryNearRiver'. 

Network representations describe concepts by their relation to other concepts in 
semantic nets. Relations are n-ary predicates with concepts as arguments. Shortest 
path algorithms such as Distance [17] are used as a similarity measure. The 
representation of relations is the strength of network models, but most similarity 
measures restrict the type of relations to taxonomic and partonomic relations. 
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Alignment models such as Goldstone's SIAM model [18] describe concepts by 
features and relations. For similarity measurement they additionally take into account 
whether features/relations describe corresponding parts: aligned matches increase the 
similarity more than non-aligned ones. SIAM measures similarity between spatial 
scenes. Applying SIAM for concept similarity is difficult: due to the different 
granularity of concept descriptions, an alignment of elements is often not possible. 
Therefore this model does not return good results when comparing geo-concepts. 

This paper extends geometric models to represent spatial relations on dimensions. 
Geometric models are chosen, because the dimensional structure allows for modelling 
the degree of relations. Conceptual vector spaces provide a solid mathematical basis 
for representing information at the conceptual level. 

2.3   Conceptual Vector Spaces as Geometric Model 

The notion of a conceptual space was introduced by Peter Gärdenfors as a framework 
for representing information at the conceptual level [1]. He argued that cognitive 
science needs this intermediate level in addition to the symbolic and the 
subconceptual level. Conceptual spaces can be utilized for knowledge representation 
and sharing and support the paradigm that concepts are dynamical systems. A 
conceptual space is a set of quality dimensions with a geometric or topologic structure 
for one or more domains. A domain is represented through a set of integral 
dimensions, which are distinguishable from all other dimensions. For example, the 
colour domain is formed through the dimensions hue, saturation and brightness. 
Concepts are modelled as n-dimensional regions and every object is represented as a 
point in a conceptual space. This allows for expressing the similarity between two 
objects as their spatial distance. 

In [19], a methodology to formalize conceptual spaces as vector spaces was 
presented. Formally, a conceptual vector space is defined as Cn = {(c1, c2, …, cn) | ci 
∈  C} where the ci are the quality dimensions. A quality dimension can also represent 
a whole domain, then cj = Dn = {(d1, d2, …, dn) | dk ∈  D}. The fact that vector spaces 
have a metric allows for the calculation of distances between points in the space. In 
order to calculate these so-called semantic distances between instances and concepts 
it is required that all quality dimensions are represented in the same relative unit of 
measurement. This is ensured by calculating the percent ranks for these values [20]. 

3   Case Study 

A customer of the British national mapping agency Ordnance Survey, such as the 
Environment Agency of England and Wales, wants to set up a flood warning system 
[21]. An overview of existing flooding areas is needed to analyze the current flood 
defence situation in Great Britain. 

OS MasterMap contains geographic and topographic information on every 
landscape feature—buildings, roads, plants, fields and water bodies. It also contains 
information on areas used for flooding, but these are not explicitly designated as such 
[22]. While labels such as 'floodplain' allude to something used for flooding, geo-
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objects named 'watermeadow', 'carse' or 'haugh' are identified as flooding areas by 
their semantic description only. The semantics of all geo-objects within OS 
MasterMap are described as concepts in an ontology using an accurately defined 
shared vocabulary. The shared vocabulary does not contain concept labels such as 
'flooding area', but only terms to describe properties, e.g. 'waterlogged' and relations 
between concepts, e.g. 'flooding area is next to river'. 
 

 

I need the topography of
all existing flooding areas.

  Query
  Concepts:

 Shared
Vocabulary

Similarity
Measurement

OS MasterMap Ontology

OS 
MasterMap

 
Fig. 1. Visualization of the case study. 

The customer searches for topographic information about rivers and flooding areas 
(figure 1). The semantics of the required information is defined within query concepts 
using the same shared vocabulary as in the OS MasterMap ontology1. To retrieve data 
according to their relevance, a semantic similarity measure is used to match the query 
concepts with OS MasterMap concepts. 

Table 1. Spatial relations in the shared vocabulary. 

spatial relation examples 
along flooding areas lie along a river bank 
connected to rivers are connected to a river, a lake or the sea 
in rivers lay in a river basin 
end at rivers end at river mouths 
end in rivers end in the sea 
end just inside ship ramps end just inside rivers 
end near port feeders end near the sea 
near / very near flooding areas are near / very near a river 

 
The shared vocabulary was developed for this case study and contains only 

expressions necessary for this particular similarity measurement. It does not raise the 
claim of completeness nor of being a representative set of spatial relations for a geo-
ontology. From the set of natural-language spatial relations formalized by Shariff et 
al. we identified a subset of those relations being relevant for the case study (table 1). 

Many geo-concepts such as 'flooding area' and 'river' can be well described by their 
relation to other geo-concepts. The customer uses the spatial relations listed above 
and a set of dimensions to specify the query concept. The complete shared vocabulary 
and measurements can be found at http://ifgi.uni-muenster.de/~eidueidu/er05.zip. 

                                                           
1 The customer can use natural-language spatial relations, while semantics in the OS 

MasterMap ontology is based on the formal definition of such relations. 
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4   Formalization of Measurement 

For the described case study the similarity of a set of OS MasterMap concepts to the 
query concepts 'flooding area' and 'river' are measured. The occurring properties and 
spatial relations are formalized as dimensions of a conceptual vector space. 

Concepts can be described by their properties or relations to other concepts. In a 
conceptual space, properties are represented by dimensions or domains. A property 
can be formalized by a dimension with a value— dimension(concept) = value. The 
value is defined within a specific range [1]. Figure 2 gives an example for the 
dimension 'waterlogged' with values for two concepts. 

 
waterlogged

never sometimes often always

riverflooding area

 
Fig. 2. Representation of dimension 'waterlogged' for concept 'flooding area' and 'river'. 

To model relations2 as dimensions, the dimension need not only represent one concept 
and its values, but one concept and its values with regard to a second concept. We 
propose to represent relations between two concepts by introducing dimensions 
depending on the first argument of the relation. The second argument is represented 
with its value on the dimension in the conceptual space. 

Table 2. Relations are represented on a Boolean or ordinal dimension with numerical values. 

relation scale original values numerical values 
along river Boolean yes 

not specified 
1 
0 

Boolean yes 
not specified 

1 
0 

nearness 

ordinal low nearness 
near 
very near 
not specified 

0 
1 
2 
- 

 

yes

not specified

river

river
flooding area

nearness to
low nearness very nearnear  

Fig. 3. Modelling relations as dimensions on Boolean and ordinal scale. 

We distinguish two types of relations (table 2): Boolean relations do not have any 
degree of existence, e.g. the relation 'along' is either applicable to two concepts or not. 
They are represented by one Boolean dimension. Other relations have different 
degrees: the 'nearness' relation can state that two objects are very near, near, or 

                                                           
2 In this case study we limit our investigation to binary relations. 
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somewhere around (low nearness). These relations require a domain consisting of two 
dimensions—a Boolean and an ordinal: If the relation holds, the Boolean dimension 
has the value 'yes' and the ordinal dimension is assigned a value specifying the degree 
(figure 3). If the relation is not applicable the Boolean relation has the value 'not 
specified' and the ordinal dimension has no value. 

According to the rank-order rule ordinal values for the degree of relations are 
transformed into ordered numerical values3 [23]. Boolean dimensions are represented 
by the values {1,0}. The value 0 does not state that the relation does not hold, but that 
it was not specified by the user or in the system4. 

For the similarity measurement we use the Euclidian and the city block metric in 
order to calculate distances [24]. The results of the case study demonstrate that our 
approach is robust and provides good results independent of the metric applied. 

Here, we focus on the measurement of semantic distances on the conceptual level. 
Concepts are convex regions in the conceptual space. Since the Euclidian and the city 
block distances are between two points rather than between two regions, all concepts 
are approximated by their prototypes [25], i.e. representing the average value for each 
interval on each dimension. 

5   Results of the Case Study 

For the similarity calculation we compare each relation of the query concept 
separately to the relations of the concepts in the data source. Tables 3 and 4 show the 
results for the similarity measurements to the query concepts 'flooding area' and 'river' 
with and without spatial relations. The semantic distance values are calculated based 
on the differences of the standardized values for each dimension5. The final values are 
normalized by the number of dimensions used in the calculation. An Ordnance Survey 
expert divided the OS MasterMap concepts into three classes according to their 
similarities to the query concept: matching, similar (concepts must be modified to 
match) and non-matching. 

Independent of the spatial relations the water bodies 'river', 'stream', 'channel' and 
'canal' are considered as very different from the query concept 'flooding area', i.e. 
their semantic distances are large (table 3). The similarity measurement without 
spatial relations ranks 'lowland', 'meadow' and 'land' more similar to the query concept 
'flooding area' than 'haugh'. Distances measured with spatial relations provide correct 
results. Since 'meadow' and 'land' do not necessarily lie near rivers such as flooding 
areas do, they are not typically used for flooding. 'Lowland' though, does not lie 

                                                           
3 The different degrees of nearness result from different distances. The degrees of relation 'end' 

depend on the prepositions implying different distances, e.g. the distance between two 
concepts related via 'ends near' is greater than 'ends in'. The numerical values are applied 
according to the values for inner/outer closeness from the human subject test in [9]. 

4 Boolean dimensions representing properties such as 'flowing' yes/no have also the values 
{1,0}, but here the value 0 explicitly negates the property. If a property is not applicable, this 
dimension of the conceptual space is not specified. 

5 Another possibility is using the z-transformation (as done in [19]), but this requires that the 
values for each dimension are normal [26]. 
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explicitly along water bodies, but due to the fact that it is low and rivers typically flow 
through lowland, it is described by being near rivers and the sea. Therefore the 
semantic distance does not increase much when including spatial relations. 

Table 3. Standardized semantic distances to query concept 'flooding area'. 

  Euclidian metric city block metric 

 OS Expert 
without 

spat. rel.6 
with spat. 

rel. 
without 
spat. rel. 

with 
spat. rel. 

OSMM floodplain match 59 40 38 20 
OSMM river no match 98 94 100 93 
OSMM stream no match 94 91 92 88 
OSMM watermeadow match 62 44 53 30 
OSMM channel no match 100 100 98 100 
OSMM haugh match 64 44 52 29 
OSMM land no match 62 79 49 69 
OSMM meadow no match 43 71 31 59 
OSMM paddock no match 66 82 54 74 
OSMM lowland similar 53 59 36 42 
OSMM canal no match 82 88 59 75 
OSMM carse match 53 38 38 22 

Table 4. Standardized semantic distances to query concept 'river'. 

  Euclidian metric city block metric 

 OS Expert 
without 
spat. rel. 

with spat. 
rel. 

without 
spat. rel. 

with 
spat. rel. 

OSMM floodplain no match 39 44 64 67 
OSMM river match 9 6 20 17 
OSMM stream match 7 6 21 19 
OSMM watermeadow no match 43 46 68 70 
OSMM channel similar 16 17 27 25 
OSMM haugh no match 95 85 88 87 
OSMM land no match 29 46 56 59 
OSMM meadow no match 95 96 88 88 
OSMM paddock no match 100 100 100 99 
OSMM lowland no match 95 98 97 100 
OSMM canal similar 7 11 20 19 
OSMM carse no match 32 35 52 54 

                                                           
6 The distance values are based on different numbers of dimensions. Adding new dimensions to 

the similarity measurement either increases the distance or it stays the same. To make the 
distances comparable, they are calculated relative to the number of dimensions and then 
scaled on a range of [0;100]. 
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The similarity measures to the query concept 'river' are shown in table 4: The 
similarity measure ranks with and without relations the concepts 'river', 'stream', 
'channel' and 'canal' correctly as the most similar concepts to query concept 'river'. But 
the inclusion of spatial relations changes their order: 'river' and 'stream' flow towards 
the sea and lay in a river valley, while 'canal' and 'channel' being artificial, man-made 
geo-objects, do not necessarily have these relations. With spatial relations 'river' and 
'stream' are classified as more similar to the query concept than 'canal' and 'channel'. 

A comparison of all distance values shows that the inclusion of spatial relations 
leads to more sensible values for every compared concept. The results of both metrics 
are good, though the city block metric shows the differences between matching and 
non-matching concepts more explicitly. This goes along with findings that the 
city-block metric is more adequate with separable dimensions (e.g. [24]). To reiterate, 
the results of the case study demonstrate that similarity measurements are more 
accurate and realistic when spatial relations are included for the calculation of 
semantic distances between geo-concepts. 

6   Discussion 

In the following, the assumptions and further requirements for this similarity 
measurement are evaluated and discussed. 
Reducing Concepts to Prototypes. To measure distances between concepts, they are 
represented by their prototypes in the conceptual space [27]. For some concepts this 
may lead to a substantial information loss, e.g. generic concepts such as 'land' with 
broad intervals on each dimension are semantically narrowed down to single points. 
Semantic Post-Processing. All concepts are described based on a common shared 
vocabulary. This vocabulary does not contain concept labels, but to specify the 
relations other concepts such as 'river valley' are needed. Since the shared vocabulary 
does not define the semantics of these, they are adjusted manually, e.g. query concept 
'river' is described as 'contained within river valley'. This is aligned to 'contained 
within river basin' of the 'OSMM river'. The concepts 'river valley' and 'river basin' 
are considered the same for the semantic similarity measurement. Such manual 
alignment could be automated by using ontologies or thesauri. 
Directed Similarity. The purpose of this similarity measurement is to find the most 
similar concepts to the query concept. We aim at measuring directed similarity from 
the point of view of the customer. Therefore the similarity values are calculated based 
on the dimensions used to describe the query concept. Other dimensions of OS 
MasterMap concepts do not have any effect on the similarity. 

7   Conclusions and Future Work 

This paper develops a way to include spatial relations between concepts for semantic 
similarity measurement within conceptual spaces. We model spatial relations as 
dimensions and show how they can be used in similarity measurement. A case study 
demonstrates how conceptual spaces extended by spatial relations lead to more 
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accurate retrieval results. Based on a shared vocabulary, a customer defines her data 
requirements by query concepts. Through the similarity measure the system identifies 
matching concepts within OS MasterMap, Britain's national topographic database. 
The paper leads to different directions for future research: 
1. Here we make the simplifying assumption that quality dimensions of a conceptual 

space are independent. This is often not true: In the case study several dimensions 
are used to describe the amount and time period when a concept is covered with 
water, e.g. 'fullOfWater' and 'waterlogged'. It will be necessary to investigate the 
covariances between dimensions and to account for these in the conceptual space 
representations. Human subject tests are a way to identify the quality dimensions 
for a concept and to infer their dependencies—see, for example, [24]—which 
would lead to non-orthogonal axes in the representation. 

2. Concepts are typically convex regions in a conceptual space. As mentioned in the 
discussion, they are approximated by points to calculate the distances which entails 
information loss. To measure similarity between concepts a distance measure 
between regions must be developed. This can be done by calculating distances 
from each point of a concept to the reference concept. The resulting distance is an 
n-dimensional surface that can be transformed to a similarity value through its 
integral [28]. 

3. In the case study we focus on spatial relations formalized within the computational 
model by Shariff et al. This model is currently restricted to line-region relations. It 
seems possible to extend it for region-region relations and model these relations as 
dimensions in the same way as for the line-region relations. 
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