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Abstract. Determining the grade of semantic similarity between geospatial 
concepts is the basis for evaluating semantic interoperability of geographic 
information services and their users. Geometrical models, such as conceptual 
spaces, offer one way of representing geospatial concepts, which are modelled 
as n-dimensional regions. Previous approaches have suggested to measure 
semantic similarity between concepts based on their approximation by single 
points. This paper presents a way to measure semantic similarity between 
conceptual regions—leading to more accurate results. In addition, it allows for 
asymmetries by measuring directed similarities. Examples from the geospatial 
domain illustrate the similarity measure and demonstrate its plausibility. 

1   Introduction 

Semantic similarity measurements between concepts are the basis for establishing 
semantic interoperability of information services. To ensure successful 
communication between geographic information services and their users, it needs to 
be determined how similar their used geospatial concepts are. There exist various 
approaches to measure such similarity between concepts, depending on the concepts’ 
types of representation. A common approach to representing concepts is based on 
geometrical models, where concepts are modelled as n-dimensional regions. Semantic 
similarity between concepts has previously been determined by approximating the 
regions through points and then measuring the distances between them. Such 
approximation inevitably leads to a loss of information and is therefore an inaccurate 
measure of similarity between concepts. In this paper, we present an approach of 
measuring semantic similarity between conceptual regions instead of their pointwise 
estimates. Such method improves the quality of the measurements by enhancing the 
accuracy of its results. 

For the formal representation of conceptual regions we utilize Gärdenfors’ idea of 
conceptual spaces—sets of quality dimensions within a geometrical structure [1]. 
Concepts can then be represented as n-dimensional regions in a vector space. The 
measurement of semantic similarity between conceptual regions is based on applying 
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previously defined distance measures, such as given by instances of the Minkowski 
metric, to vectors forming the convex boundaries of the concepts whose similarities 
get evaluated. This way, a semantic distance function between two conceptual regions 
can be established. Furthermore, with the presented approach it is possible to account 
for asymmetries of similarity judgements, i.e., concepts are judged to be more similar 
to their superconcepts than vice versa. Examples from the geospatial domain are used 
throughout the paper to illustrate the semantic similarity calculations and their 
interpretations: we represent concepts such as mountain, hill, and lowland in a 
conceptual space according to their shapes through the dimensions 'height' and 
'width'. 

Section 2 introduces formal conceptual spaces and gives an overview of 
geometrical similarity measures. Section 3 describes the semantic similarity measure 
for conceptual regions and thereby applies the Euclidean distance function for 
calculation of similarity values. In section 4 we demonstrate how the proposed 
measure accounts for the fact that similarity judgements may be asymmetric. 
Section 5 focuses on the illustration and interpretation of distance values in different 
topological configurations (e.g., meeting and overlapping) of conceptual regions. The 
final section provides conclusions and directions for future work. 

2   Related Work 

This section defines formal conceptual spaces and introduces geometrical similarity 
measures. 

2.1   Formal Conceptual Spaces 

The idea of a conceptual space was introduced by Peter Gärdenfors as a framework 
for representing information at the conceptual level [1]. Such representation rests on 
the foundation of cognitive semantics [2], asserting that meanings are mental 
entities—mappings from expressions to conceptual structures, which themselves refer 
to the real world. Conceptual spaces can be utilized for knowledge representation and 
sharing, and support the paradigm that concepts are dynamical systems [3]. According 
to Gärdenfors, a conceptual space is a set of quality dimensions with a geometrical or 
topological structure for one or more domains. A domain is represented through a set 
of integral dimensions, which are distinguishable from all other dimensions. For 
example, the colour domain is formed through the dimensions hue, saturation, and 
brightness. Concepts cover multiple domains and are modelled as n-dimensional 
regions. Every object or member of the corresponding category is represented as a 
point in the conceptual space. This allows for expressing the similarity between two 
objects as the distance between their points in the space. Recent work by Gärdenfors 
deals with the idea of representing actions and functional properties in conceptual 
spaces [4]. 

In [5], a methodology to formalize conceptual spaces as vector spaces is presented. 
Formally, a conceptual vector space is defined as Cn = {(c1, c2, …, cn) | ci ∈  C} 
where the ci are the quality dimensions. A quality dimension can also represent a 
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whole domain and in this case cj = Dn = {(d1, d2, …, dn) | dk ∈  D}. The fact that 
vector spaces have a metric allows for the calculation of distances between points in 
the space. This can also be utilized for measuring distances between concepts, 
although it requires their approximation by “prototypical points.” In order to calculate 
these so-called semantic distances between instances of concepts all quality 
dimensions of the space must be represented in the same relative unit of 
measurement. Assuming a normal distribution, this is ensured by calculating the z 
scores for these values, also called z-transformation [6]. For specifying different 
contexts one can assign weights to the quality dimensions of a conceptual vector 
space. This is essential for the representation of concepts as dynamical systems. In 
this case Cn is defined as {(w1c1, w2c2, …, wncn) | ci ∈  C, wj ∈  W} where W is the 
set of real numbers. 

2.2   Geometrical Similarity Measures 

There exist a number of approaches to assess semantic nearness in a conceptual space 
with quite differing philosophies: some focus on angle or length difference, and others 
on the distance between vectors. Following Jones and Furnas [7] we choose a 
geometric representation with iso-similarity contours to demonstrate the semantic 
differences of the similarity functions: Moving an object along a contour line—
analogous to contours in topographic maps—does not have an effect on its similarity 
value. 

 
Euclidian- and City-block Distance Measure 
The most common way of measuring similarity in conceptual spaces is the 
Minkowski metric (equation 1) which measures semantic distance in analogy to 
spatial distance. The Minkowski metric is a generic formula: r=1 results in the city-
block distance and r=2 in the Euclidian distance. According to the city-block metric 
the distance equals the sum of the absolute distances of each dimension and the 
Euclidian distance is computed as the square root of the sum of the dimension-wise 
squared differences [8]. Similarity s is a linear decaying function of the semantic 
distance d [9, 10]. 
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Figure 1 shows the iso-similarity contours for the Euclidian and city-block metrics: 
Vectors along one contour line all have the same similarity to the query vector. In the 
two-dimensional figures the Euclidian similarity contours are circular and the city-
block contours are quadratic. 
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Fig. 1. Geometric comparison of the Euclidian (a) and the city-block distance measure (b). 

Johannesson and Gärdenfors demonstrated in experimental studies—subjects had to 
rate the similarity between different mollusc shells and beetles—the usability of the 
Minkowski metric—especially the different underlying assumptions when Euclidian 
and city-block metrics are applied—within conceptual spaces [1, 11-13]. 

 
Cosine Similarity Measure 
The cosine measure (equation 2) is a normalized inner product of two vectors: The 
inner product is divided by the product of the Euclidian vector lengths. 
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Because of the Euclidian length normalization, all vectors having the same 
direction are transformed into the same unit vector regardless of their length (figure 
2). Therefore all vectors on the same radiating line—the iso-similar contour—have 
the same similarity. Only the angle of separation influences the similarity value: The 
greater the angle between two vectors the lower is their similarity. In the 
two-dimensional representation of figure 2 the iso-similarity contours are lines with 
symmetrical similarity values on both sides of the query vector, but in an 
n-dimensional space the contours are cone-shaped. The cosine similarity measure is 
bounded from zero to one [7]. It is used, for example, to determine similar terms in a 
concept space [14]. The pseudo-cosine measure shown on the right side of figure 2 is 
similar to the cosine measure but normalized by the city-block length of the vectors.  

This set of similarity measures was chosen because they are most frequently used 
in cognitive spaces, but there exists a variety of other similarity measures for vector 
spaces such as the dice measure, overlap measure and the Jaccard measure [7]. 
Besides the mentioned similarity measures for vector spaces there exist a number of 
other approaches to measure semantic similarity such as the feature matching model 
[15], Matching-Distance Similarity Model [16, 17], Distance [18] and the 
transformational model [19]. However, these are based on different representational 
models. Here, we consider only geometric similarity measures based on conceptual 
spaces. 
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Fig. 2. Geometric comparison of the Cosine (a) and Pseudo-Cosine similarity measure (b) [7]. 

Previous distance measures for concepts in conceptual spaces first reduce concepts to 
a single point such as the balance point or centre point—often representing their 
prototypes [5, 20]. Then similarity measures for instances are applied [21]. By 
reducing concepts to single points or instances, the expressiveness as well as the 
significance of the distance measure are reduced. Neither a balance point nor the 
centre point can fully represent the semantics of a concept. The semantic similarity 
measure proposed in the following section overcomes this shortcoming. 

3   Semantic Similarity between Geospatial Concepts 

Current similarity measures confine themselves to estimating the similarity between 
instances, i.e. between points1 in the vector space. The semantic similarity measure 
between geospatial concepts presented here is based on the similarity measure of 
instances, but measures the distance between concepts represented as convex regions 
in space. Similarity gets calculated in a two-step process: At first the concepts are 
reduced to a set of vector pairs. This way we transform the convex regions of 
concepts into a format to which the original similarity measures can be applied. Then 
the similarity measure is used for this set of vector pairs to calculate the similarity 
value. After stating some preliminary assumptions, section 3.2 explains how to 
calculate the vector pairs between concepts and section 3.3 focuses on the calculation 
of the similarity value. 

3.1   Preliminary Assumptions 

Before describing the similarity measurement procedure we need to introduce some 
preliminary assumptions: A concept is modelled as a convex region in an 
n-dimensional space, i.e. the region is continuous, completely closed and the hull of 

                                                           
1 A point is represented by a vector in a vector space. We use the term 'point' to underline the 

difference between instances modelled as points and concepts modelled as regions. 
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the region is convex. Extreme distance values occur for position vectors whose end-
points lie on the hull of the region. Figure 4 illustrates that the distances measured 
from a vector in the inside of query concept 'hill' (vector qi) lie between the maximum 
and minimum distance values measured somewhere on the hull of the region (here 
vectors q3 and q6). Therefore it is sufficient to consider only the hull of the region 
representing query concept 'hill' to estimate the distance values. 

The considerations about the similarity measure start with the simplifying model 
that the convex hull consists of a set of discrete points. Later we transfer the findings 
to a continuous function. We further assume that all concepts have the same 
dimensions. 

Like the similarity measures in section 2.2 the illustration is simplified by 
representing concepts in a two-dimensional space. In the text we explain the findings 
for n-dimensional spaces. 

3.2   Calculating Vector Pairs between Concepts 

The hull of query concept Q is formed by the endpoints of a set of position vectors 
SQ={q1, q2, …, qn}. The first step of the distance calculation between Q and a concept 
C aims at defining for each vector qi in SQ one or several corresponding vectors of C. 
All vectors form vector pairs with qi and these are the basis for the similarity 
calculation. The identification which vector pairs reflect best human similarity 
measurement is an important question. Figure 3 illustrates three different strategies. 

 

prototypical 
object

(a) (b) (c)

Q

C

Q

C

Q

C

 
Fig. 3. Different strategies can be applied to identify for each vector qi one or several 
corresponding vectors of a concept C: (a) searching for the vector with minimum distance, (b) 
searching for the vectors with either minimum or maximum distance, or (c) defining a 
prototypical object as reference object for the similarity calculations. 

Strategy (a) is inspired by the idea that humans intuitively assess similarity by 
comparing a concept Q with that instance of the other concept C which is most similar 
to Q. Therefore the corresponding vector has the minimum distance to a vector qi. 

Strategy (b) supposes that not only the most similar, but also the most dissimilar 
instances of a concept influence human similarity assessment. Therefore there exist 
two corresponding vectors of C: one with minimum and another with maximum 
distance to a vector qi. 
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Strategy (c) assumes that there exists a reference instance—e.g. a prototype of the 
concept—which is used as corresponding vector for all vectors qi. In this case the 
similarity measure is only influenced by the shape of the conceptual region Q and 
concept C is reduced to one prototypical point. 

Extensive human subject tests are required to substantiate the choice for one 
strategy. Such investigation is important, but lies outside the scope of this paper 
which focuses on developing a formal procedure for measuring similarity between 
conceptual regions. 

( ) QiicCxi SqqxfqnearVec ∈−=
∈∀

,)(min)(  (3) 

For the following calculations we apply strategy (a). Therefore we compute for 
each vector qi in SQ the vector c in C with the minimum distance to qi according to the 
following formula (equation 3). Concept C is given by the function fc(x). 

( ) Qiii SqqnearVecq ∈,)(,  (4) 

This vector pair (equation 4) consisting of vector qi and the nearest vector in 
concept C nearVec(qi) specifies the corresponding vectors between which the 
semantic distance is measured. 
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Fig. 4. Computation of corresponding vectors from query concept Q to concept C2. 

                                                           
2 For demonstration purposes we represent the concepts in the example by two dimensions 

only. For a complete description though, more dimensions such as 'shape' etc. are needed. 
The dimensions of the conceptual space 'width' and 'height' are measured in some 
standardized unit. For the calculation of semantic distances it is required to represent all 
dimensions in the same relative unit of measurement. The original, non-standardized units—
in this example width and height can be measured in meters or kilometres—are standardized 
by the z-transformation [6]. 



8      Angela Schwering and Martin Raubal 

Figure 4 illustrates the procedure: for each point qi on the hull of query concept 'hill' 
one searches for the vector of concept 'mountain' with the minimum distance as 
illustrated by the difference vector DVi. The vector pair determination depends also 
on the applied similarity measure: For cosine measures strategy (a) aims at 
minimizing angle size and therefore computes for each vector qi in SQ the position 
vector c of C with the smallest angle difference. 

3.3 Applying Euclidian Distance Measure to Calculate Distance Value 

All existing similarity measures explained in section 2 can be applied to the vector 
pairs introduced in section 3.2. This paper focuses on the most commonly used 
semantic similarity measure in conceptual spaces: the Euclidian distance measure. 
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q5

 
Fig. 5. Distances illustrated as values for each point qi. 

The Euclidian distance between two vectors in an n-dimensional space is measured by 
calculating the absolute difference vector DVi. The length of vector DVi is the 
semantic distance value for point qi. Therefore each vector qi of the hull of Q has a 
distance value to concept C. The hull of an n-dimensional region is an (n-1)-
dimensional object in an n-dimensional space. 
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Fig. 6. Distances illustrated as distance function DV(qi). 
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The distance values can be represented on a dimension s. For better understanding we 
illustrate the distance values in two different ways: In figure 5 dimension s is 
represented by assigning the distance values to each point of the hull of query concept 
'hill'. Figure 6 shows the dimension s as a function of the hull of concept 'hill'. Both 
figures illustrate the same fact using different representations. 
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Fig. 7. Transformation of the pointwise Euclidian distance values into one distance value. 

The Euclidian distance measure evaluates the length of the distance vectors. Distances 
near to zero indicate that concept 'hill' lies very close to concept 'mountain'. A small 
value on dimension s stands for high similarity. The minimum distance is for vector 
(4,4.5) and the maximum distance is for vector (2,3). 

sizeOfHull

dsfDV (...)∫  (5) 

Currently with the finite set of vectors qi the semantic distance can only be 
approximated. For a continuous computation we use the integral over the semantic 
distance function. Since the integral depends not only on the value of dimension s, but 
also on the size of the concept's hull—the bigger the hull the greater is the interval on 
the hull-dimensions—a normalization factor such as the size of the hull is required. 
Figure 7 shows the computation of the integral with respect to distance dimension s to 
estimate the distance value (equation 5). The semantic distance from concept 'hill' to 
concept 'mountain' is 1.73. 

4   Asymmetric similarities 

Psychologists found that the perceived similarity between two stimuli is not 
necessarily symmetric: non-prominent objects are more similar to a prominent object 
than vice versa [20]. In 1977, Amos Tversky [22-24] proposed a similarity measure 
allowing for asymmetric similarities. Geometric similarity measures are based on 
multidimensional spaces and assume metric properties such as minimality, symmetry 
and triangle inequality between items. The inability to deal with asymmetric 
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similarities between objects and concepts is probably the most heavily criticized 
aspect of geometric similarity measures and was the reason for various extensions of 
conceptual spaces [25, 26]. 
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Fig. 8. Depth of concepts in the concept hierarchy (see also [16]). 

In the geospatial domain, Rodriguez and Egenhofer developed the Matching-Distance 
Similarity Measure (MDSM) which accounts for asymmetries in similarity 
assessment [16, 17, 27, 28]: One component of the MDSM is Tversky's Feature 
Matching Model, which becomes an asymmetric measure depending on the choice of 
parameters α and β in the contrast model [22, 23]. 
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Fig. 9. Asymmetric semantic distance between two concepts. 

Following the idea that people perceive similarity from a subconcept to its 
superconcept greater than the similarity from the superconcept to the subconcept, and 
that the superconcept is commonly used as a basis for the similarity judgment, 
Rodriguez and Egenhofer developed a formula (equation 6) to compute these 
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parameters by building the ratio of the concepts' depth in the ontology (figure 8). In 
general, concepts deeper in the hierarchy are smaller—in terms of size of their 
represented conceptual regions—than their superconcepts, which have a greater 
degree of generalization. 

The semantic distance measure proposed in this paper reflects the above described 
observation: concepts with a high degree of specialization covering a small region in 
the conceptual space tend to be more similar to general concepts than vice versa. 
Figure 9 shows how the similarity measure between concepts works and illustrates the 
effect of asymmetry. On the right hand side the query concept Q is much broader than 
the compared concept C. Therefore the semantic distance is greater and the similarity 
value is smaller than in the figure on the left side. 

5   Illustration and Interpretation of the Distance Value 

The following examples illustrate the results of the proposed semantic similarity 
measure for different topologic configurations and give an interpretation of the 
semantic distance values. Disjoint concepts were already discussed in section 3. Here 
we focus on meeting, overlapping, inside/containing and covering/covered by 
concepts. We refer to Egenhofer's definition of the topologic operators 'disjoint', 
'meet', 'overlap', 'inside', 'contains', 'covers' and 'covered by' [29, 30]. 

5.1   Meeting and Overlapping Concepts 

Figure 10 shows two meeting concepts 'steep face' and 'mountain' and their semantic 
distance function. For the interval where the conceptual regions 'steep face' and 
'mountain' meet, the semantic distance is zero. The length of the interval is the same 
as the length of the contact. From this distance function it is not possible to 
distinguish whether 'steep face' meets 'mountain' from outside—the interiors of 'steep 
face' and 'mountain' do not intersect, but their boundaries do—or one covers the other, 
i.e. their interiors and boundaries intersect (see also section 5.2). 
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Fig. 10. Meeting concepts and their semantic distance function. 
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Figure 11 shows two overlapping concepts with their semantic distance function. The 
semantic distance between overlapping concepts is zero for the whole overlap. 
Therefore we cannot resolve the difference between meeting and overlapping 
concepts purely from the distance function. However, from the distance function one 
can gather information about the topology of both concepts: 
1. If the distance function becomes zero, both concepts either meet (figure 10), 

overlap (figure 11), the query concept covers the other concept ('plateau' covers 
'lowland' in figure 12), or it is inside another concept ('plain' is inside 'lowland'). 

2. If the distance function does not become zero at any time and every vector in C is 
also vector in Q, then concept Q contains concept C ('lowland' contains 'plain' in 
figure 12). If such a vector does not exist, then concepts Q and C are disjoint. 
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Fig. 11. Overlapping concepts and their semantic distance function. 

To estimate the difference between meeting, overlapping, covering concepts, and 
concepts being inside other concepts, an additional measure computing the degree of 
overlap is required to refine the similarity values. The ratio of the overlapping and 
non-overlapping parts of the region is a good indicator for the degree of semantic 
overlap and therefore also for the similarity. The greater the overlap and the less the 
non-overlapping parts, the higher is the similarity between both concepts. A brute-
force algorithm can be used for computing overlap of convex hulls: the plain SWEEP 
algorithm is also applicable in the 3-dimensional case (for detailed explanation see 
[31, 32]). Such computation is important, but outside the scope of this work. 
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5.2   Concepts Being Inside or Covered by Other Concepts 

Figure 12 shows concepts inside or covering other concepts: 'plain' lies inside 
'lowland', i.e. there is a complete overlap. Semantically interpreted this means that 
'plain' is a subconcept of 'lowland'. If a concept is inside another concept, the distance 
values from the superconcept to the subconcept are always greater zero (for covering 
concepts the distance is greater or equal to zero). The distance values from the 
subconcepts 'plain' respectively 'plateau' to their superconcept 'lowland' are zero. The 
overlap measure can be used for further distinction. 
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Fig. 12. Overlapping concepts with different topologic configurations. 

Figure 13 gives an overview of the concepts discussed above in one conceptual space. 
The given semantic distance values are based on the described similarity measure and 
do not include additional refinements of an overlap measure. These semantic 
distances must be transformed into a similarity value according to a similarity 
function, for example a linear decaying function of these semantic distances. 
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Fig. 13. Similarity values between concepts with different topologic relations in one conceptual 
space. 

6   Summary and Future Work 

This paper develops a geometric similarity measure between concepts modelled as 
conceptual regions in a conceptual space. Previous approaches reduce concepts to a 
prototypical point and use these as input for pointwise similarity measures. The 
similarity between concepts is therefore reduced to the similarity of their prototypes. 
Such reduction of regions to single points inevitably leads to a loss of information. 
These measures neither account for the shape of the conceptual regions, nor for their 
size. The similarity measure presented in this paper includes the whole conceptual 
region of a query concept for similarity calculation. Shape, size and distances of a 
concept to another concept influence the similarity measure. Moreover, this directed 
similarity measure accounts for the fact that people’s similarity judgments are 
asymmetric. 

The paper leads to different directions for future research: 
1. Geospatial concepts are often complex with non-obvious dimensions. We 

simplified the concept description in the example by representing only two 
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dimensions. The underlying quality dimensions for a concept, its values on a 
dimension and the dependencies between dimensions can be identified by human 
subject tests (e.g. [13]). As well multi-dimensional scaling can be used to identify 
potential dimensions used by humans to judge similarity. 

2. Here we make the simplifying assumption that both concepts are described by the 
same, independent dimensions. However, many concepts are represented by 
different numbers of dimensions. Future research needs to investigate whether it is 
feasible to either leave out different dimensions and consider only common ones, 
or whether missing dimensions have a negative impact on the similarity of 
concepts. Sometimes, different dimensions can be mapped to each other (see for 
example the mapping of RGB to HSB colours in [5]). Dependencies between 
dimensions may be discovered in human subject tests—e.g. [13]—which leads to 
non-orthogonal axes in the representation. 

3. Since the determination of vector pairs is a unidirectional process—for each vector 
of the hull of Q the corresponding vector of C is determined—the size and shape of 
Q has a great influence on the similarity function. However, vectors in C that do 
not belong to a vector pair have no effect. When applying the Euclidian distance 
measure, the part of C being far away from Q does not influence the similarity at 
all. Future work must investigate empirically whether it is justifiable to consider 
only the part of a concept C with the minimum distance. Other strategies must be 
investigated (see section 3.2). We propose to include the distribution function of 
instances of the concept in the similarity measure, e.g. consider only that part of a 
concept with the density of instances larger than a given marginal value. 

4. People’s similarity judgments are highly dependent on their tasks and the general 
context. Future work needs to compare the calculated similarity values with results 
from human subject tests using different scenarios. Differences in similarity values 
for different contexts could be represented in conceptual spaces by assigning 
weights to the quality dimensions. 
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