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Abstract

Ad-hoc shared-ride trip planning is a planning task on
a non-deterministic transportation network. We propose to
solve this task in a mobile geosensor network, which con-
sists of transportation clients and hosts. In a mobile geosen-
sor network the communication costs are a critical factor.
Trip planning agents need communication to collect knowl-
edge about the current network, and any way to limit this
need reduces the costs of a solution. This paper introduces
a theoretical model based on time geography, where clients,
as trip planning agents, can actively identify relevant trans-
portation hosts before communication starts, and hosts can
identify whether their route is relevant for a specific plan-
ning task before responding to any request. This model re-
duces the communication costs significantly, which is at first
derived theoretically, and then confirmed by an example.

1. Introduction

Ad-hoc shared-ride trip planning assigns vehicles with
free transportation capacity to passengers (or goods) with
transportation needs in an ad-hoc manner [16]. Todays cen-
tralized systems cannot cope with ad-hoc shared-ride trip
planning on a large scale, since this planning problem con-
cerns a complex, non-deterministic transportation network.
Complexity arises from the unpredictability of transporta-
tion capacities: vehicle drivers are autonomous and do not
follow schedules, and vehicle seats are quickly occupied.

But ad-hoc shared-ride trip planning can be efficiently
realized in a decentralized manner, establishing a mobile
geosensor network [14] with nodes representing transporta-
tion client and host agents. This approach was demonstrated
in principle by using a simple, sub-optimal planning strat-
egy [16].

An optimal trip, for example the quickest trip, can take
any route, and can involve multi-step rides. Consequently, a
planning agent seems to require knowledge of the full cur-
rent transportation network before coming up with an opti-

mal trip. Since the planning node must collect this knowl-
edge ad-hoc from other network nodes, it becomes clear that
the critical question is how the communication effort to col-
lect this knowledge can be reduced. The motivation for any
reduction is manifold [20, 17]:

• Communication costs are a major concern in mobile
sensor networks. Nodes are battery-powered, and
short-range radio communication is the most energy-
consuming activity of a node.

• Bandwidth of the communication channel is another
concern. Mobile sensor networks communicate in rel-
atively short communication windows (to save power),
and this limits the number of messages to be ex-
changed.

• The memory of the planning nodes (e.g., handheld mo-
bile devices) is another limited resource in this type of
application. It can be assumed that all agents locally
store the street network and have routing algorithms
for their own purposes. But in shared-ride trip plan-
ning the network is dynamic, with the number of edges
equaling the number of hosts times the lengths of their
travel plans. For an inner-urban traffic situation, this
number can easily exhaust the storing and analyzing
capacity of the planning agent.

In this paper we are interested in the (at the time of plan-
ning) optimal trip for a client. The hypothesis is that the
required knowledge, and hence, the necessary communi-
cation in the geosensor network, can be restricted signifi-
cantly. This means our focus is on enriching the reason-
ing capabilities of the agents in the geosensor network, and
we are not so much concerned with communication routing
strategies or protocols.

Specifically, we develop a heuristic based on spatio-
temporal criteria that enables the planning clients to identify
potentially relevant transportation hosts before any commu-
nication, and also enables contacted hosts to decide whether
their routes may contribute to an optimal trip before re-
sponding. The theoretical framework that underlies this fil-



tering approach is time geography. It was introduced by
[2] and focuses on the question of how peoples locations
in space at given times affect their abilities to be at other
locations at other times.

The next section gives an overview of previous work and
the resources needed for the rest of the paper. We then ap-
proach the problem first by identifying what information is
potentially relevant for the trip planning process (Section 3).
Since this leads to time geographic elements, we introduce
the required concepts and formalize the information needs
(Section 4). The formal model will be demonstrated by an
example that confirms the theoretical results (Section 5).
The paper closes with a discussion of the results and con-
clusions (Section 6).

2. Previous work

2.1. Shared-ride trip planning

Ad-hoc shared-ride trip planning has recently been pro-
posed as one application for mobile geosensor networks
[16, 18, 17]. Conventional central shared-ride systems can-
not deal with ad-hoc trip planning and are in principle
not scalable for large numbers of concurrent transporta-
tion clients and hosts. The peer-to-peer approach of mobile
geosensor networks [14] turns out to provide an effective,
efficient and elegant alternative. It is effective because it
can provide trips close to optimal trips (note that the glob-
ally optimal trip can be determined in a non-deterministic
system only in hindsight). It is efficient because it does so
for low communication costs [17]. And it is elegant be-
cause it requires low computational effort. Details depend
on the chosen combination of communication and wayfind-
ing strategies.

Ad-hoc shared-ride trip planning is a problem defined
on a complex, non-deterministic transportation network.
Therefore the approach taken to show the properties of trip
planning in a mobile geosensor network was by simulation.
This simulation is specified in [18] and results are presented
in [17]. The reality of urban traffic was thereby simplified
to a grid world, in which hosts travel at constant veloci-
ties and clients look for rides along a predefined route. A
suitable protocol allowed directed messaging in the peer-
to-peer communication network. The simulation realized a
negotiation process of three steps:

1. A client broadcasts a request message with the speci-
fied route.

2. Hosts with travel plans overlapping this route broad-
cast an offer message for this particular overlap.

3. Clients, after collecting all offers and selecting the
best, broadcast booking messages.

In this simulation the authors investigated how different
communication strategies—different depths of communi-
cation into the transportation network—affect the average
trip lengths. Note that all three negotiation steps must hap-
pen within one communication window, which in practice
radically limits the communication depth, and thus also the
knowledge of the planning client agent.

While this simulation was suited to investigate the ef-
fect of different communication strategies, it did not pro-
vide a way to compute optimal solutions for the shared-ride
trip problem. The limitation of the clients knowledge was
not based on relevance criteria, and the chosen wayfinding
strategy—following a predefined route—does not necessar-
ily deliver the optimal (e.g., quickest) trip.

The optimal trip can take any route. In the beginning
of the planning process, the client does know only start
and destination. But if a client’s request contains only start
and destination, it seems difficult for the hosts to determine
whether their travel plans are potentially relevant for the
client. This problem will be addressed in the following by
utilizing elements of time geography during the planning
process.

2.2. Time geography

People and resources are available only at a limited num-
ber of locations and for a limited amount of time. The abil-
ity to be present at a particular location in time is there-
fore an essential human requirement. Time geography de-
fines the space-time mechanics by considering different
constraints for such presence, i.e., the capability, coupling,
and authority constraint [2]. The possibility of being present
at a specific location and time is determined by peoples abil-
ity to trade time for space, supported by transportation and
communication services.

Every individual (person or object) can be characterized
by its space-time path. Such paths are available at various
spatial (e.g., house, city, country) and temporal granulari-
ties (e.g., decade, year, day) and can be represented through
different dimensions. Figure 1 shows a persons space-time
path during a day, representing her movements and activity
participation at three different locations. The tubes depict
space-time stations, i.e., locations that provide resources
for engaging in particular activities, such as sleeping, eat-
ing, and working. The slope of the path indicates how fast
a person can move through her environment. If the path is
vertical then the person is engaged in a stationary activity.

Three classes of constraints limit a persons activities in
space and time. Capability constraints limit an individuals
activities based on her abilities and the available resources.
For example, a fundamental requirement for many people
is to sleep between six and eight hours at home. Coupling
constraints require a person to be at a specific location at a



Figure 1. A persons space-time path during
a day including activity participation at three
different locations (A: home, B: café, C:
work).

particular time. For example, if two persons want to meet
at a Café, then they have to be there at the same time. In
time-geographic terms, their paths cluster into a space-time
bundle. Certain domains in life are controlled through au-
thority constraints: A person can only shop at a mall, when
the mall is open, such as between 9am and 8pm.

All space-time paths must lie within space-time prisms.
These are geometrical constructs of two intersecting cones
[6]. Their boundaries limit the possible locations a path can
take based on peoples abilities to trade time for space. In
order for a person or activity to be accessible, its space-time
station must intersect the space-time prism for a minimal
temporal duration. The projection of the space-time prism
to geographic space results in the potential path area–all
locations that can be reached by the individual [7].

Time geography has been applied in the areas of Geo-
graphic Information Systems regarding transportation net-
works to model and measure space-time accessibility [8,
11, 19]. It has also been advocated to integrate time ge-
ography with both Geographic Information Systems and
Location-Based Services to achieve more user-centered sys-
tems [10, 13]. Further applications in the geo-domain con-
cern the structuring of dynamic wayfinding environments
[4] and the modeling of geospatial lifelines [3]. Analytical
formulations of basic entities and relationships from time
geography can be found in [9].

3. An optimal shared-ride trip planning strat-
egy

In the best case, an ad-hoc shared-ride trip planning
agent disposes of all currently available transportation.

With this information it can apply a time-dependent shortest
path algorithm [1, 5, 12] to identify the, let us say, quickest
route, and the hosts providing this trip. The dynamics and
unpredictability of the transportation capacities make the
quickest route a temporally limited one: at other times the
solution can be different. Even from hindsight the quickest
route at the requested time may have been another one. The
temporal limitation cannot be overcome by any strategy;
hence, the “quickest” route is the optimal solution at time
t with all the transportation capacities available (known) at
that time.

Learning about all currently existing travel plans requires
communication, i.e., battery power and bandwidth, and
computation, in particular memory. Since all of them, bat-
tery power, bandwidth, and memory, are scarce resources
in mobile geosensor networks, any effort must be made to
minimize communication and collected information. Key is
filtering the potentially relevant travel plans from all travel
plans, and to communicate and collect only this subset.

In [16] it was reasonable to initiate communication by
a request from the client, containing a route plan. Hosts
responded with an offer only if they could contribute to the
request, i.e., if their own travel plans overlapped with the
route planned by the client. In our scenario the client does
not know a route; she knows only her current position s and
the desired destination d. Hence, it is not obvious for a host
to decide whether her travel plans could contribute to the
demand of the client expressed through s and d.

In this situation the most conservative solution is to re-
quest from all hosts broadcasting their travel plans. By this
way each client gets a full picture of the network and can
find an optimal (quickest) trip, but clients also collect many
host travels that are irrelevant for their trip. However, any
limitation of this set has to ensure that no travel plan that
could be part of a quickest trip is excluded from communi-
cation.

Any heuristics will work with some sort of spatial buffer:
near transportation hosts are more probably relevant for a
client than far ones, in adaptation to the First Law of Ge-
ography [15]. This argument can be sharpened by looking
into realistic travel demand. Nobody is willing to travel in-
finite time in an urban environment. There is an upper time
limit beyond which a travel offer is no longer accepted. Ei-
ther people get to their destination within reasonable time,
or they are not willing to pay for the offered transportation.
They will either give up their travel demand and stay, or
travel on their own.

For the following it is important to find an upper limit
that is realistic and conservative: a latest arrival time. If it
is chosen too short, the trip planning attempt of the client
can be unsuccessful: there is no trip within this time frame.
If it is chosen too long its filtering effect suffers: there are
many more trips than the quickest one. For the time being,



and without limiting generality, we propose to take walk-
ing time as the upper limit in urban environments, i.e., on
trips of walking distances, assuming that people only pay
for transportation if they have a benefit, i.e., if they are faster
than by foot.

An upper travel time limit yields a first sharp criterion
to identify potentially relevant transportation hosts. Only
hosts that can reach the client’s destination within this travel
time potentially contribute to the client’s trip. Otherwise
they are too far off to allow the client to reach the destination
within time. Hence, one can delimit the hosts responding
to a client’s request by the circle drawn from the client’s
destination with a radius derived from the upper limit of the
client’s travel time. In a realistic, heterogeneous urban street
network the circle deforms to a potential path area [7].

Although this argument was given here by intuition, it
already uses an element from time geography. In the next
section we develop more systematically the required instru-
ments from time geography, and re-consider and improve
upon this first result.

4. Time geography for optimal shared-ride trip
planning

In this section those elements from time geography are
utilized that help to narrow down the hosts relevant for a
declared demand of a client to an absolute minimum. The
elements are combined to simple computations, which hosts
can apply to decide whether their travel plan is relevant and
should therefore be communicated to the client.

4.1. The cone of latest arrival time

Consider Figure 2. It shows a client’s current position
and destination in a space-time diagram. The client wants
to reach the destination in any case before the marked latest
arrival time (upper limit of travel time). Since this arrival
time was determined by the walking time for the client,
and transportation is assumed to be faster than walking,
the client’s start point is somewhere inside a conic volume1

containing all locations from which the destination can be
reached before the marked arrival time. We call this cone
dl-cone, being placed in the destination at the latest arrival
time.

All hosts under the cone can contribute to transportation
to the destination before the latest arrival time. All hosts
outside cannot contribute, since the cone is constructed
based on the maximum velocity of vehicles. Hosts on the
surface of the cone can only contribute if the client waits

1Again, in a realistic, heterogeneous street network the cone is de-
formed, but it is a perfect cone in travel time geometry. Hence we will
stay with this idealizing terminology.

Figure 2. The destination cone of latest ar-
rival time.

until his space-time station intersects with the host’s space-
time path on the surface of the cone, and if the host then
heads directly to the destination with maximum velocity.
Hosts within the base circle, but far from the start, can con-
tribute only very late in the process, i.e., close to the top of
the cone.

The mathematics for the cone base circle is simple: if the
latest arrival time is th = t0 + h then the circle is defined
by its radius r:

r = h ∗ vmax (1)

If the client collects at time t0 the travel plans of all hosts
within the base circle at t0, the client gets complete trans-
portation network knowledge for trip planning as available
at t0. Note however that the method specifies all potential
locations of hosts, not hosts. If, by chance, there are no
hosts at these locations there is no trip available within this
cone, i.e., before the latest arrival time.

As discussed by [16] shared-ride trip planning is an iter-
ative process, due to the dynamics of the transportation sup-
ply: new hosts enter the traffic, other ones get booked, or get
their bookings canceled and are available again. In this sit-
uation a client revises travel plans in regular time intervals.
The more time proceeds the smaller the base circle of the
cone becomes. In Equation 1 h is decremented with every
iteration. A linearly reducing radius means that the num-
ber of locations—or, assuming equal distribution of hosts
over all locations, the number of hosts—reduces quadrati-
cally from iteration to iteration. The potential path area a is
calculated by:

a = π ∗ r2 (2)

Two other measures are needed for the following: the
volume of a cone, cv , and the volume of a frustum, cf , the
portion of a cone which lies between two parallel planes



cutting the cone.

cv =
1
3
πhr2 (3)

cf =
1
3
πh

(
r2
t + rt · rb + r2

b

)
(4)

In these formulas h stands for the height of the cone, and r
for the radius (rt for the radius of the top circle, and rb for
the radius of the bottom circle).

4.2. The cones of earliest arrival time

The earliest arrival time is determined by constructing
the cone originating in the start point and looking for the in-
tersection with the destination station (Figure 3). The cone
cut at this level by a parallel plane contains all locations to
be reachable within the travel time from now to the earliest
arrival time. We call this cone the se-cone (start, earliest).

The cone originating in the earliest arrival time in the
destination contains all possibilities to reach the destination
up to the earliest arrival time (Figure 3). We call this cone
the de-cone (destination, earliest).

Figure 3. The cones of earliest arrival time.

4.3. The cone of host locations from start

Now imagine that the client is happy to look only parts
of the route ahead. Instead of planning the whole trip she is
content with planning for the next segment(s).

Hosts that can take the client from her current location
have to be on a space-time-path that crosses the client’s
space-time station inside of the dl-cone. That means they
have to be within the cone centered on the client’s location
that is tangential proper part of the dl-cone (see Figure 4).
The client needs only to query all hosts in the base circle of
this smaller cone to find a host to start traveling; other hosts
within the base circle of the dl-cone cannot contribute to
start a trip reaching the destination before the latest arrival
time.

Figure 4. Identifying hosts that can offer
timely transport from start.

4.4. The space-time prism of the client’s
travel possibilities

So far we have identified locations of hosts only, not con-
sidering their travel plans. In this set there are still many
hosts that have trajectories irrelevant for the problem, for
example if their travel plans lead to the outside of the dl-
cone, or if they end before reaching the client. Hence, the
next question is: can a host decide whether his travel plan
is a relevant one, i.e, whether his travel plan bundles with
the potential trips of the client? If the hosts can do this, they
can filter out irrelevant offers before they are made.

Clients can move only within a subspace of the dl-cone,
a space-time prism defined by the intersection of the se-
cone and the dl-cone (Figure 5). They cannot move out-
side of this space-time prism without giving up on reach-
ing the destination before the latest arrival time. With other
words, if there is a trip for the client, it must be in the space-
time prism. If there are several trips, they must all be in the
space-time prism, including the optimal. This means only
hosts with trajectories intersecting the space-time prism are
relevant. It is the smallest volume in the space-time diagram
that theory—in this case time geography—can specify.

Consequently, the next question is whether hosts can de-
termine the space-time prism of a client for cheap compu-
tational costs before broadcasting their offer for transport.
Efficiency is important since communication windows in
sensor networks are short, and hence, responses on requests
have to be broadcasted quickly. Furthermore, one does not
want to loose battery power in extensive computations that
was gained in communication. For the computation, the
hosts need to know only the street network, but nothing
about other agents in the network. In order to solve this
problem no communication among hosts is needed.

The remaining question is: what is the gain in efficiency



Figure 5. The space-time prism of a client.

of communication? In the previous section (Section 3) we
have seen that without time geographic concepts a client
would at best request all travel plans from hosts within the
base circle of the dl-cone (if not requesting offers from all
hosts). Previously all hosts would send an offer. Figure 6
demonstrates that hosts in the base circle of the dl-cone can
reach any point in the frustum, defined by the maximum
velocity of the hosts, within the travel time to latest arrival.
The frustum and the dl-cone have the following relationship
(note that the frustum is turned upside down, such that the
top circle of the frustum is equal to the bottom circle of the
dl-cone; both are of the same height):

r(b)(dl-cone) = rt(frustum)
rb(frustum) = 2rt(frustum)

A simple calculation with Equations 3 and 4 shows that
the volume of the dl-cone is one-seventh of the volume of
the frustum. This means many hosts—on average six out of
seven—will make an offer although their routes are outside
of the dl-cone and thus in any case irrelevant for the client.

After introducing elements from time geography we see
that a client still has to send a request to all these hosts.
The number of request messages will not change. However,
now only hosts send an offer that have a travel plan inter-
secting with the space-time prism of the client. Figure 6
illustrates also this difference by comparing the volumes of
the frustum with the client’s space-time prism. The client’s
space-time prism is again significantly smaller than the dl-
cone (a subspace of the dl-cone). Note that the volume of
the space-time prism varies according to the chosen latest
arrival time, h, and its asymmetry. It is smallest for a start
point on the surface of the cone (which implies that clients
can travel on their own with the maximum velocity of hosts,
which is unrealistic in our case): in this case the space-time
prism is a straight line only. The volume is largest for a

symmetric prism of two cones of half the height h of the
dl-cone (which implies that a client starts at the destination,
which is also unrealistic): this space-time prism has a quar-
ter of the volume of the dl-cone, with Equation 3:

cv(dl) =
1
3
πhr2

cp(client at destination) = 2
1
3
π

h

2

(r

2

)2

=
1
4
cv(dl)

With other words, the client’s space-time prism is in our
case always smaller than 1

4 of the dl-cone, and thus, at most
1
7 · 1

4 ≈ 3.5% of all hosts in the base circle of the dl-cone
will make an offer to the client.

Figure 6. The space-time prism compared to
all possible routes driven by hosts in the
base circle.

5. Example by cellular automata

Now let us consider an example to demonstrate the the-
oretically shown effects. The example assumes a grid envi-
ronment and autonomous agents on the grid nodes. Move-
ments are possible from each grid node in the four cardi-
nal directions (4-neighborhood). For the example we pos-
tulate random direction choices by the hosts at each step
and homogeneous velocity of all host agents. The velocity
v = vmax is fixed to 1 grid segment per time interval.

Consider Figure 7. In the environment the client has to
travel four grid segments to reach the destination on the
shortest route. Then the earliest possible arrival time of the
client is four time intervals (if she gets immediate rides on
the shortest route).

Let us further assume that the walking velocity of the
client is three times slower than v of the hosts. Then the
latest arrival time of the client is twelve time intervals (if she
has to walk all the segments on the shortest route because
she did not get any ride).



Figure 7. Start (left) and destination (center)
of a client in a grid environment. Shaded: the
base circle of the de-cone.

Applying Equation 1 yields a dl-cone base circle of r =
12 grid segments, and Equation 2 yields an area of the circle
of a = 452 grid cells. However, Equation 2 works with the
Euclidean distance, while we deal with 4-neighborhood. In
our discrete grid environment Equation 2 changes to:

a = (r + 1)2 + r2 (5)

—the area of a diamond. This formula yields a = 313 grid
cells for the base circle of the dl-cone (or a = 41 for the
base circle of the de-cone; compare with Figure 7).

With Equation 5 we can compute volumes of discrete
cones by integration (again, we do not apply the equations
for continuous cones, Equations 3-4):

cv =
h∑

i=0

ai (6)

For example, the volume of the dl-cone is computed
by the sum of the base circles over all time instances
t0, t1, . . . , t12:

cv(dl) =
12∑

i=0

ai = 1469 voxels

Accordingly, the volume of the frustum in Figure 6 is:

cf (dl) =
24∑

i=12

ai = 9269 voxels

For the space-time prism of the client, cl, the se-cone is
proper part of the dl-cone up to t4 and contains the dl-cone
from t8 onwards (see Figure 8). With that its volume is:

cp(cl) =
12∑

i=0

ai

= 1 + 5 + 13 + 25 + (5 · 41) + 25 + 13 + 5 + 1
= 293 voxels

Figure 8. A vertical profile of the client’s
space-time prism shows the three regions of
an opening cone, skew cylinder, and closing
cone.

Now take into account that hosts move randomly. Some
hosts reach their own destination during the considered time
period, and other ones enter traffic. That means we may
assume an equal distribution of host density in all grid nodes
of the frustum. With other words, of 9269 possible host
locations only 293 are relevant for the client, which is 3%
(which is close to the expected value).

It can be expected that the real number of relevant hosts
is even smaller since the relevant voxels are not randomly
distributed, but autocorrelated. A host that will travel
through one of the locations of the space-time prism will
most probably also travel through other ones.

6. Discussion and conclusions

The results show convincingly that the space-time prism
of clients imposes a clear criterion for hosts to determine
whether their travel plans are potentially relevant for a
client. They also demonstrate that this criterion is efficient
by filtering out about 97% of all hosts that are irrelevant
for the planning process. We have argued that computa-
tional costs for determining the space-time prism by hosts
are comparably low. Finally the results gave a theoretical
motivation for specifying the area for spreading a request.

The resulting model is theoretically founded, but be-
comes a heuristic by choosing arbitrarily a suitable latest
arrival time. The choice of the latest arrival time should
be carefully investigated. Its arbitrariness can cause situa-
tions where the dl-cone has no connected path from s to d.



Hence, one of the open questions is a suitable wayfinding
strategy of the clients. The clients collect offers, and these
offers form a time-dependent transportation network. If this
network does not need to have at every time instance a con-
nected path to the destination the client needs a strategy for
a risky decision: what is the most promising direction, or
the most promising intermediate node for waiting in this
network?

Related to this problem is the question when a client who
deliberately limits its route planning to the next segments
comes up with a global fastest route. Competition for trans-
portation capacity (seats) among clients interferes with in-
cremental trip planning.

Furthermore, we are working on a large-scale simulation
of the model in a real street network to confirm the theoret-
ically derived results. In realistic street networks cones still
exist, but they have irregular shape due to the travel time ge-
ometry. They can be determined, though, by average travel
time costs along street edges. Another aspect to study is the
density of hosts in this simulation.

Relaxing the constraints of a simulation to real networks
and hosts of a variety of velocities is another extension.
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