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Abstract. Many architectures of location based services (LBS) focus on the inter-
play of the involved technologies. Instead, we present a modular architecture that 
centers on the outcomes of LBS for users. Specifically, we derive a process-
oriented context model for service adaptation and develop from this a user-centric 
LBS architecture that distinguishes different degrees of user involvement. This 
model highlights the effects that differences in interaction have for the users, for 
example, the effects on spatial learning. We illustrate this in an exploratory empir-
ical investigation of interaction differences in the navigation services offered by 
Apple’s iPhone and Google’s Android smart-phones, which demonstrates how a 
difference in device design leads one to be more efficient for navigation and the 
other to be better for spatial learning. 

Keywords: Location based services, mobile interaction, context, navigation, spa-
tial cognition, spatial learning. 

1   Introduction 

Location based services (LBS) use positioning, telecommunication, and mobile 
computing technologies to deliver information and assistance to users based on 
their geographic position. To date, much of the emphasis in LBS development and 
research has focused on the first half of this equation: the numerous technologies 
assembled into an architecture. Consider, for example, the Open Location Services 



2  

Interface Standard1. OpenLS documents a set of services providing core, directory, 
gateway, location utility, presentation, route, navigation, and tracking functionali-
ty. But what of the second half of the LBS equation: the people who use these ser-
vices?  

Take the case of a middle-aged man using an in-car satellite navigation service 
(the most popular form of LBS these days). The fellow would like his LBS to as-
sist him with a number of related but slightly different navigation tasks, such as 
generating route directions to out-of-town locations, finding alternative routes 
when he encounters a traffic accident along the way, and searching for a pizza par-
lor once he has reached his destination. All of these tasks make use of the same 
route, navigation, and presentation services (to use OpenLS parlance), but for each 
task, our user has a different goal and a different context. In the first case, he is 
likely at home with time to plan and with knowledge of his nearby surroundings; 
in the second, he is driving or pausing in a parking lot on the side of the road; and 
in the third, he is unfamiliar with his surroundings and likely to only briefly stop 
in order to interact with the service. To further complicate our story, this fellow is 
not the average user (the notion of an average user being an ideal). Like a signifi-
cant minority of men, perhaps he is red-green color blind. When performing all of 
those three tasks with his LBS, he would like the color palettes used in map dis-
plays designed with his vision limitations in mind. His wife, on the other hand, 
prefers full-color map displays but would like the option to switch between map 
displays and text directions. 

 In this paper, we take (in Section 2) the use case of the standard navigation 
service (as the archetypal LBS) and consider both its architecture and its out-
comes, i.e., how the everyday users of navigation services achieve (or do not 
achieve) their immediate and longer-term objectives. This focus on users both 
suggests that LBS researchers need to take into account additional factors [1] and 
also evaluate actual outcomes. We expand the technical architecture of LBS to in-
clude aspects relevant to the people who use LBS—namely, context, task, and us-
er properties—and discuss how LBS can address these properties using adaptive 
and adaptable services (in Section 3). Toward the second end, we conclude with 
an experiment (in Section 4) in which pedestrians navigate suburban neighbor-
hoods using smart-phone navigation services, which are rapidly replacing in-car 
systems. Today in 2010, the state-of-the-art smart-phones are the Apple iPhone 
and the Google Android, which differ in how their included navigation services 
pan and zoom through routes. Our experiment exploits this difference to evaluate 
how efficiently people can navigate routes with LBS assistance, how well they can 
learn those routes along the way, and how the goals of navigation performance 
and learning may in fact be trade-offs. The modular, user-centric architecture de-
veloped in this paper begins to suggest (in Section 5) a manner by which these 
trade-offs in outcomes can be taken into account as part of the overall scheme of 
an LBS. The designs of particular devices may change from year to year, but this 

                                                            
1 http://www.opengeospatial.org/standards/ols 
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user-centric architecture is built on technical principles and behavioral findings of 
lasting relevance. 

2   LBS and Navigation 

LBS are information services that are sensitive to the location of mobile users, re-
late their location to the surrounding environment, and provide location based in-
formation to facilitate the successful completion of spatio-temporal tasks. Typical-
ly, LBS run on mobile devices that provide at least a positioning mechanism and a 
network connection. With a focus on navigation services, this section discusses 
LBS architecture, personalization, and use. 

2.1 Technical Architecture of LBS 

LBS are embedded within complex technical infrastructures, including positioning 
systems, application servers, and mobile devices [2, 3] (Figure 1). Mobile devices 
receive position information and connect users to LBS. Positioning of mobile de-
vices works either actively, such as through a GPS (Global Positioning System) 
receiver, or passively, i.e., the position is accessed over a network connection, 
such as the mobile phone network. Other technologies can be utilized for indoor 
positioning [4]. Wi-Fi or cell networks connect the mobile devices (the clients) to 
LBS providers, and the providers deliver the actual service based on the user’s po-
sition. 

  

 

Fig. 1. Technical architecture of LBS with its typical components, adapted from the OpenLS 
specification (see footnote 1). 
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2.2 Navigation Assistance in LBS 

As with most routing services, LBS use a network representation of the environ-
ment to calculate a route from origin to a destination. Calculation may return the 
shortest or fastest route, or optimize routes according to other parameters, such as 
the most scenic or easiest route [5, 6]. Presentation of these routes has to account 
for the limitations of the device. This mostly affects graphical presentations due to 
the limited screen size, but may also consider background noise in city environ-
ments when delivering spoken text [7]. 

Instructions on how to follow a route may either be presented in-advance or in-
crementally [8]. In-advance directions present all instructions before route follow-
ing starts. This is what route services on desktop computers do. Users get an over-
view of what to expect along a route. Incremental directions provide step-wise 
instructions on the next action to be performed close to each decision point. This 
is what LBS typically do, given the limited screen size of mobile devices. 

LBS have essentially three ways to incrementally present navigation infor-
mation: 1) only present local information (only give information on the next deci-
sion point to come); 2) perform automated adaptation to the currently appropriate 
level of detail (switch automatically between overview and detailed views); 3) let 
users decide on which level of detail information is presented (provide means for 
zooming and panning the presented information). 

2.3 Empirical Studies on Navigation with LBS 

Several studies have investigated these and other presentation options and their ef-
fects on task performance and spatial learning in navigation with mobile devices. 
In these studies participants navigated an unknown environment (real or virtual) 
using a mobile device with an LBS. Navigation performance is measured by trav-
eled distance, time taken, and the number of navigation errors made. Faster travel 
with a few deviations from the shortest path is considered to indicate successful 
assistance from the LBS. Often studies also look at the spatial knowledge partici-
pants acquire while using the LBS. This may test for route knowledge, i.e., the lin-
ear knowledge subjects have about the way they have traveled, or survey 
knowledge, i.e., the metric knowledge they have acquired about the layout of the 
environment [9]. Spatial knowledge can be tested by sorting images of intersec-
tions in their order of appearance along a route, by pointing tasks, or by drawing 
sketch maps, among other tasks. When participants score higher on these tests of 
spatial knowledge, it is again taken as an indication of successful assistance from 
the LBS. 

In [10], participants navigated through a zoo using either a PDA or a head 
mounted clip-on. The devices incrementally displayed photos of each intersection, 
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augmented by either graphical lines indicating the direction to be taken or verbal 
commands describing the action to be performed. Performance and directional 
knowledge were fairly good across both modalities. Participants were asked to 
place markers representing decision points on an empty road map as a test of their 
survey knowledge. This evaluation showed that survey knowledge was poor in all 
conditions. In another study in the same setting, participants navigated either using 
a PDA or printed maps [11]. The PDA had three different modes: 1) only visual 
information. When approaching an intersection an animation showed the relation 
of the previous, current and next intersection. A line on the intersection’s photo 
then indicated the way to take. 2) The same as 1), but with the photo a verbal in-
struction was given. 3) Only the photo and verbal instruction. The printed maps 
only showed part of the environment at the same time. Results were that map us-
ers acquired much better route and survey knowledge than the PDA users. The 
presentation mode had no influence on the performance; animations did not help. 

In [12], participants navigated in a multi-level virtual environment. They had 
either continuous access to a map showing their position or could request to see it 
at all times. In both conditions participants either had to solve location quizzes 
(indicate current position on map) or not. Sixteen runs were performed with assis-
tance (a run being the task to find a specific target from the current start position) 
and a final transition run without any assistance. Excess distance, the number of 
map requests, and performance in the quizzes were used as performance measures. 
Participants with continuous position indication performed best with regard to ex-
cess distance. However, for those requesting a map, excess distance and number 
of requests decreased with increasing number of runs, indicating that learning took 
place. The quizzes had no immediate effect on performance, but again learning 
took place, as participants got better in the quizzes with increasing number of 
runs. For the transition run, those having had continuous position indication and 
no quizzes performed worst, while those requesting maps and having quizzes per-
formed best.  

Using three different groups—participants that had traveled a test route once 
before; participants using paper maps; and participants using a GPS-based hand-
held navigation system—Ishikawa et al. [13] tested the influence of assistance 
medium on wayfinding performance. The groups traveled six different routes; at 
the end of each route they had to point back to the origin. After all routes, partici-
pants drew a sketch map of the environment. Performance measures were devia-
tion from shortest path, travel speed, number of stops, finding the goal at all, and 
direction estimates and sketch-map accuracy. Participants using the GPS traveled 
longer distances, were slower, and made more stops. Their configurational and 
topological understanding of the environment was worse. While the device al-
lowed users to find their way, it was less effective than maps or direct experience 
as support for smooth navigation. 

These studies demonstrate that using mobile navigation devices lead users to 
“turn off their brain.” They do not process the presented information and the in-
formation perceived in the environment to a sufficient level which results in great 
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difficulties in acquiring both route and survey knowledge. This can be attributed 
to a lack of attention to their surroundings, which is a common phenomenon in au-
tomation, and a focus solely on when the devices issue new instructions, which 
decouples the actions to be performed from their spatial embedding. The experi-
ments in [12] show that involving users more deeply in the navigation process re-
sults in a learning effect. LBS design should aim for a way of presenting infor-
mation that is useful in the given situation and also fosters processing of that 
information, increasing users’ confidence of “doing the right thing” and decreas-
ing their dependency on the device [14]. 

3 A Modular User-Centric Architecture for LBS 

If we return to the LBS architecture discussed in Section 2.1, we find no compo-
nents to account for these behavioral results. The OpenLS specification (and simi-
lar architectures) cannot help an LBS developer to understand which design char-
acteristics will help the users of a navigation system acquire more accurate spatial 
knowledge, follow a route more efficiently, or reach another outcome. In this sec-
tion, we present a novel architecture for LBS that is modular and user-centric. 

3.1 Adaptation to Users, Tasks, and Context 

User-centric LBS adapt to the needs of the individual user, the demands of the 
given task, and the context of the particular environment [15-19]. There are two 
ways of achieving knowledge sharing between a service and its user: making the 
service adaptive or adaptable [20] (Table 1). Adaptive services provide dynamic 
adaptation to the current task and user, with little or no effort involved by the user. 
Adaptable services have the user change the functionality of the service and there-
fore keep the user in control. 

Table 1. Two methods by which services can adapt to users, tasks, and context, modified 
from [20] and [21]. 

 Adaptive Adaptable 
Definition dynamic adaptation by the ser-

vice to current task and user 
user changes functionality of 
the service 

Strengths little (or no) effort by the user user is in control 
Weaknesses loss of control user must do substantial work 
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3.2 Modular LBS Architecture 

In this novel user-centric architecture, the task is the driving force in determining 
the context of interaction of a user with the device and environment. We look at 
the task from the perspective of the users: What is their level of involvement in the 
execution of the task? What is the effect of automation on understanding the situa-
tion? How may a task be personalized?  

The proposed modular architecture is based on the process-oriented context 
model of Freksa et al. [22] and the formal mobile map adaptation model devel-
oped in [21] (Figure 2). Combining both models results in a general model that fo-
cuses on how the current task influences interaction of a user with device and en-
vironment. 

The process-oriented context model covers how an agent (which we have been 
referring to as a user) acts in an environment using a representation of that envi-
ronment (in our broader LBS architecture, this is provided by the mobile device). 
The task determines which processes between the components environment E, 
agent A, and representation R become relevant. In the formal map adaptation 
model the task determines how adaptation may occur. When unifying the two 
models the emerging model allows for defining interaction with a system and en-
vironment in a user-centric way. This unification requires mapping components of 
one model to those of the other. The task is the central element in the process-
oriented context model, which shall also be the case for the unified model. Ac-
cordingly, components of the map adaptation model will be mapped to it.  

 
a) b) 

Fig. 2. a) Context model as defined in [22]; b) context model developed in [21]. 

The User-Model U of Figure 2b maps to the agent A in Figure 2a. This is a di-
rect mapping. The Task-Model T maps to the task T. The Context-Model C in [21] 
defines the current Situation S. This has no direct counterpart in the other model 
since, here, the interplay between all components—especially the processes repre-
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sented by arrows in Figure 2a—determines the situations. Components of the Con-
text-Model can be found in all elements of the process-oriented model. The repre-
sentation component of the process-oriented context model captures any kind of 
external aid used to interact with an environment. For the purposes of the modular 
LBS architecture, it is generalized to represent the device with its interface proper-
ties. 

Figure 3 illustrates a unified model. The task is in the center; it determines the 
processes between agent A, environment E, and device D as is the case in the pro-
cess-oriented context model. Additionally, the task defines which adaptations in 
interaction with and presentation of the device are possible and sensible. Either the 
agent or the device performs these adaptations as part of the interaction between 
these two components, which goes back to the previous discussion of adaptive 
versus adaptable. In a subsequent step, the adaptations influence the behavior of 
the device (e.g., its information display); this step is not depicted in Figure 3. 

 

 

Fig. 3. The combined context models adapted for use with LBS. 

Using the generalized context model, for different tasks within an LBS the lev-
el of user involvement for their respective parts can be identified. This makes use 
of the activity theory for cartography [23]. Each task is divided into activities, 
goals, and sub-goals. Different (combinations of) activities fulfill different sub-
goals and eventually lead to the overall goal. In terms of the modular context 
model, each sub-goal requires a different activity, which will trigger different pro-
cesses between agent and device (different interactions with the device), between 
agent and environment (e.g., performing a wayfinding action), or between device 
and environment (e.g., getting a position). Breaking down tasks to this level re-
veals differences in the required user involvement for successfully performing ac-
tivities. It allows for a detailed view on an overall task that can be used to identify 
the parts of user-system interaction that are crucial to keep users globally oriented 
and receptive to their environment. Accounting for this when implementing LBS 
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may avoid the effects of lack of spatial knowledge acquisition and feelings of de-
pendency found in behavioral studies (Section 2.3). 

In summary, activities may be categorized regarding the level of user involve-
ment. There are three different levels of involvement: 
Level 1. Functionality the user does not need (and want) to get involved in. In 

general, this comprises processes between device and environment, for exam-
ple, receiving GPS signals and calculating a position. 

Level 2. Functionality the user needs to be involved in to foster learning and de-
crease dependency on the device. These functions can only be personalized to 
optimize an individual’s learning process, but may not be altered such that they 
lose their learning effect. 

Level 3. Functionality that may be personalized to a specific user’s preferences 
and needs in any conceivable way. 

With this distinction, we define a modular, user-centric architecture for LBS. The 
major difference to existing architectures is its focus on the processes that are re-
quired to perform a task, instead of looking only at the technical components. For 
each activity it allows defining the required user involvement by changing the par-
ticipating components of the service. Each overall task (e.g., planning a route 
ahead of a trip or finding alternative routes along a trip) comes with different sets 
of activities; each activity determines the involved components and processes be-
tween them; each process defines the level of required user involvement. This per-
spective focuses on the second half of the LBS equation; it facilitates changing the 
outcomes for the users, such as minimizing user interaction or maximizing acqui-
sition of spatial knowledge. 

 

 

Fig. 4. An example of the user-centric modular architecture. The different activities also 
change the processes between agent and environment, which is not depicted in this simpli-
fied view. Among the many possible, the figure highlights one difference in modules that is 
subject of an empirical study presented in Section 4. 

Figure 4 gives an example. The task “route following” is broken down in activ-
ities such as “positioning” or “navigating an intersection.” Each activity involves 
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different components of the device’s modular architecture. “Positioning” is an ac-
tivity that does not involve any user interaction (Level 1). The “map style” com-
ponent may be adapted to a user’s preferences (Level 3). The figure illustrates one 
particular example of a Level 2 activity: a distinction between automatic zooming 
and panning to the next intersection (adaptive behavior) vs. manual zooming and 
panning (adaptable behavior). This difference will be subject of an empirical study 
detailed in the next section. 

4 Navigating with Smart-Phones: An Empirical Study 

To address the effects adaptable versus adaptive LBS have on user performance 
and spatial learning, we conducted an empirical case study of people using smart-
phone navigation services. The experiment and its results also serve to demon-
strate and ground the proposed modular user-centric LBS architecture. 

 

                      

Fig. 5. a) The Apple iPhone 3GS displaying a portion of the Camino Real route; b) the 
Google Android G1 displaying a portion of the Storke Ranch route. 

We investigated the way by which people advance through the route directions 
presented on the smart-phone. When a user presses an arrow button, the Apple 
iPhone automatically pans the map and zooms its extent to include both the begin-
ning and end of the next route segment. At the top of the screen, the respective 
route instruction is displayed (e.g., “Turn right at Pacific Oaks Rd.”; Figure 5a). 
When a user presses a similar arrow button on the Google Android, the respective 
route instruction is overlaid on the map, near the next decision point, but the map 
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stays put—it is left to the user to pan and zoom (Figure 5b). The iPhone is adap-
tive in this respect, while the Android is adaptable. 

The modular user-centric LBS architecture (in addition to the literature re-
viewed in Section 2) suggests that these different design characteristics will lead 
to different user experiences and outcomes. We predict that the iPhone’s adaptive 
pan and zoom will lead to more efficient navigation performance, with users on 
average taking fewer wrong turns, and that the Android’s adaptable pan and zoom 
will lead to greater learning, with users on average being more adept at re-walking 
the route without the aid of the navigation service and at conveying the spatial 
knowledge they acquired from manually panning and zooming the map display. 
That is, we expect to find a trade-off in users’ navigation performance and spatial 
learning, with the design of the navigation system determining which system per-
forms better in which respect. 

4.1 Methods: Participants, Instruments, and Procedure 

Eight graduate students, staff members, and alumni from the University of Cali-
fornia, Santa Barbara (UCSB) participated in the study (six female, two male). 
Only one owned a smart-phone (an older generation iPhone), which did not have a 
built-in GPS unit. Most participants had not visited the study neighborhoods be-
fore. 

Participants began by completing a demographics questionnaire and the Santa 
Barbara Sense of Direction Scale, a standard self-report questionnaire measuring 
one’s environmental-scale spatial ability [24]. Next, participants were individually 
taken to one of two suburban neighborhoods near the UCSB campus in Goleta, 
California: Storke Ranch and Camino Real (Figure 5). They were given a brief 
lesson in using the pedestrian navigation service on the iPhone or the Android (the 
order was counterbalanced). Participants received a card listing three addresses 
with descriptive names (e.g. Corner House, Picnic Table), they were told that the 
first address was for their current starting location, and they were instructed to use 
the smart-phone to navigate to the second address, to the third address, and then 
back to the first. The experimenter followed along, recording any comments made 
and marking any wrong turns. If participants took more than two consecutive 
wrong turns, the experimenter suggested they check where they were going. Both 
routes were approximately 1.5 miles long. 

After returning to the beginning of the route, participants were instructed to re-
walk the entire route. During this test phase, participants were not allowed to use 
the navigation service and were instead instructed to use Cognitive Surveyor [25] 
to track their movements using GPS and to test their spatial knowledge. At each 
destination, participants were instructed by this Android application to estimate 
the direction and distance from their location to each of the two other destinations. 
This is a standard measure of survey knowledge. Again, the experimenter fol-
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lowed, recorded any wrong turns, and informed participants if they had taken 
more than two wrong turns in a row. The number of wrong turns is a standard 
measure of route knowledge. 

After completing the test phase of the first route, participants were taken to the 
beginning of the second route, in the other neighborhood. They were then given 
the smart-phone they did not use in the first route, and asked to repeat the process 
of the learning phase and the test phase. Finally, participants completed a ques-
tionnaire asking about their experiences using the two different smart-phones and 
they were debriefed on the reasons behind the experiment. 

4.2 Results and Discussion 

Let us discuss the experiment’s results using the terminology of the user-centric 
modular LBS architecture. Eight users participated in the study, each with a dif-
ferent level of spatial ability, as measured by the Santa Barbara Sense of Direction 
Scale2. They completed two different tasks: use the LBS to navigate—and un-
knowingly learn—an unfamiliar route and re-walk the route from memory. They 
performed these tasks in two environments (the Camino Real neighborhood with a 
somewhat rectilinear grid and the Storke Ranch neighborhood with curving streets 
and cul-de-sacs) using two different devices (the iPhone with adaptive/automatic 
panning and zooming and the Android with adaptable/manual panning and zoom-
ing). In total, the routes were walked 32 times. 

Participants’ performance on the navigation-with-LBS task was measured by 
the number of wrong turns while first walking a route. Their spatial learning was 
measured by the number of wrong turns each made while re-walking the route (a 
measure of route knowledge) and by their accuracy at estimating the directions 
and distances between the destination points (a measure of survey knowledge). 

A factorial analysis of variance (ANOVA) of the wrong-turn data shows no 
main effects. None of the factors (device, task, and environment) made a signifi-
cant difference on its own in the mean number of wrong turns made by a partici-
pant. However, there is a significant three-way interaction, F(4, 32) = 3.261, p = 
.029, implying that the number of wrong turns made by participants depended up-
on the combination of device, task, and environment. Figure 6a shows that partici-
pants using the iPhone made more wrong turns while performing the test task, 
while participants using the Android made more wrong turns while performing the 
learning task. This is evidence for our prediction that the design of an LBS leads 
to trade-offs in outcomes. 

                                                            
2 Note that this number of participants may be sufficient for drawing prelimi-

nary conclusions here but that a larger number will be required for more rigorous 
follow-up. 
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As shown in Figure 6b, participants showed different patterns of results in the 
two different environments. Android users took their wrong turns on the curving 
streets of Storke Ranch, while iPhone users took wrong turns in both neighbor-
hoods (on different tasks). This may be explained by one participant’s comment 
that on the Camino Real route, she chose to leave the Android view set to its de-
fault, maximum extent, which encompassed the entire route. She was able to navi-
gate the entire route without panning or zooming. Future studies should more 
carefully control for the level of difficulty of the test environments, but for the 
purposes of this exploratory experiment, it’s actually interesting to see how the 
environment is another factor that interacts with device and task properties to 
shape outcomes. 

 

 

Fig. 6. A measure of route knowledge: a) Mean number of wrong turns made by partici-
pants aggregated across the two routes; b) split by route. 

The fact that users could choose to squeeze the entire route onto the Android 
screen may also have affected the test of survey knowledge. The iPhone can do 
the same, but since participants were not allowed to manually manipulate the map 
scale or extent, they could not do so. The accuracy of participants’ direction esti-
mates between destinations did not significantly differ from those who learned on 
the iPhone and those who learned on the Android. But accuracy of distance esti-
mates did significantly differ, t(14) = .566, p = .042, with Android users showing, 
on average, .07 miles less error in their distance estimates. This is approximately 
29% of the average distance between destinations. Since they were allowed to pan 
and zoom the map as they wished (sometimes to the entire extent, as the partici-
pant just mentioned did), participants using the Android appear to have acquired 
more accurate distance knowledge. This finding is in line with recent studies of 
spatial learning from small, mobile map displays and from large, standard paper 
maps, which suggest more accurate spatial learning when less panning and zoom-
ing is required [26, 27]. 
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The user property of spatial ability did not predict the number of wrong turns 
made by participants or the accuracy of their distance knowledge. It did marginal-
ly correlate with errors in their direction knowledge, r(16) = -.462, p = .071. Par-
ticipants with higher scores on the Santa Barbara Sense of Direction Scale were 
more accurate estimating directions from one destination to another. 

Another pattern emerged with respect to screen orientation. At least half of the 
participants were observed physically rotating the iPhone and the Android so that 
the directions on the on-screen map were aligned with those of their surroundings. 
Many said that they would like the phone to automatically rotate the display (a 
track-up map display, as opposed to the standard north-up map display). In the fu-
ture, a similar study could be performed to test whether an adaptive interface in 
which the track-up map automatically rotates leads to better navigation perfor-
mance and worse spatial learning than the current north-up maps, which are 
adaptable in that the user can physically rotate the phone. Previous research has 
shown a similar trade-off in airplane pilots using cockpit displays [28]. 

The results of this study, focusing in particular on panning and zooming map 
displays, show how device, user, environment, and task factors interact to affect 
navigation performance and spatial learning outcomes. 

5   Trade-offs in LBS Architectures and Outcomes 

According to the standard LBS architecture reviewed in Section 2, there are no 
important differences between using the navigation services on the iPhone and the 
Android. The overall technical infrastructure is the same; it is only a slight differ-
ence in the presentation on the device. Our empirical study suggests that this slight 
but key difference actually makes a noticeable impact when the scope of the LBS 
architecture is expanded to include users, their environmental context, and their 
tasks. Whether the device is adaptable or adaptive will lead to certain trade-offs in 
outcomes. In this paper, we have presented an exploratory study focusing on navi-
gation services and the particular design characteristic of panning and zooming in 
the context of pedestrian travel through suburban neighborhoods. Yet the experi-
mental methodology and the modular user-centric LBS architecture developed 
here are of more general use. This is true both for other components of today’s 
mobile navigation services (e.g., north-up vs. track-up map displays; graphical vs. 
textual route instructions) that influence understanding and learning, as well as for 
future developments in LBS principles and technology. As LBS become available 
to a wider range of people around the world, this need to shift the focus from 
technological infrastructure to the needs, contexts, and tasks of the user will be-
come even more important.  
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