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ABSTRACT

Location-based mobile learning (LBML) is a type of mobile learning in which the learning content is 
related to the location of the learner. The evaluation of LBML concepts and technologies is typically 
performed using methods known from classical usability engineering, such as questionnaires or 
interviews. In this paper, the authors argue for applying visual analytics to spatial and spatio-temporal 
visualizations of learners’ trajectories for evaluating LBML. Visual analytics supports the detection 
and interpretation of spatio-temporal patterns and irregularities in both, single learners’ as well as 
multiple learners’ trajectories, thus revealing learners’ typical behavior patterns and potential problems 
with the LBML software, hardware, the didactical concept, or the spatial and temporal embedding 
of the content.
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INTRodUCTIoN ANd MoTIVATIoN

The positioning and multimedia capabilities of current mobile devices have given rise to novel 
learning paradigms that integrate the learner’s position in the didactical concept, thus enhancing 
learning through the discovery of phenomena in situ. We refer to this kind of learning as location-
based mobile learning (LBML) (Brown et al., 2010). Integrated LBML management systems, such 
as the one presented in Sailer, Kiefer, and Raubal (2015), support the teacher in developing LBML 
lessons, as well as in the straightforward dissemination of these lessons to the learners’ devices. At 
the same time, the LBML management system stores the content created by learners on a server, 
such as geo-tagged photos or textual answers, thus enabling the teacher to track the learning progress 
and provide individual feedback.

Challenges, however, still exist when using such LBML platforms. Teachers would like to be 
aware of the learners’ behavior and difficulties in executing the outdoor exercise. These difficulties 
are mainly caused by environmental variability, unreliable technology, low usability of the system, 
and by the learners’ and teachers’ background and capabilities (Sailer, Schito, Kiefer, & Raubal, 
2015). A careful investigation and evaluation of LBML concepts and platforms is necessary to cope 
with these challenges.
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We argue here that difficulties in LBML often become apparent in the learners’ spatio-temporal 
behavior (i.e., their trajectory). A method and tool for the analysis of the learners’ trajectories would 
help in identifying potential problems occurring during LBML, including those caused by decisions 
the teacher made during the design of the single learning units. Teachers could, for instance, apply 
spatio-temporal analyses on a learner’s trajectory to identify problems, such as getting lost, running 
out of time, visiting incorrect places, or visiting places in an order not intended by the teacher. The 
relation between spatio-temporal events in the trajectories and the success in completing learning units 
may help for a better understanding of LBML mechanisms. Consequently, teachers could improve 
the tasks with respect to the learning goals, the spatio-temporal embedding, or the learning content, 
leading to improved learning outcomes for future LBML sessions.

The data necessary for this kind of analyses, such as trajectories measured using the Global 
Positioning System (GPS), can easily be collected with an LBML infrastructure. In general, the 
broad dissemination of mobile devices has resulted in large amounts of location tracking data, 
and corresponding analysis methods have been proposed in the Geographic Information Science 
(GIScience) literature (N. Andrienko, Andrienko, & Gatalsky, 2003). While most analysis methods 
for trajectories are designed to be performed fully-automated (Y. Zheng & Zhou, 2011), e.g., spatio-
temporal data mining (Mamoulis, 2009), analysis methods based on visual analytics take the human 
analyst into account (semi-automated analysis) (G. Andrienko, Andrienko, & Wrobel, 2007). The 
underlying assumption of visual analytics is that by combining the strengths of machine (e.g., 
fast processing and visualization) and human (e.g., visual interpretation and domain knowledge), 
hypotheses on certain data patterns and on interpretations of these patterns may emerge.

This paper explores the opportunities of using visual analytics to analyze learners’ trajectories for 
the evaluation of LBML concepts and platforms. We propose that LBML platforms should provide 
tools that support the visual analysis of one or several learners’ trajectories.

We demonstrate the approach using several example trajectories recorded during different LBML 
sessions with the OMLETH platform (Sailer, Kiefer, & Raubal, 2015). The trajectories are visualized 
spatially as overlays on digital maps, as well as spatio-temporally in 3D visualizations. It is discussed 
how these visualizations may help to contribute to a better understanding of the dynamic process 
which took place during the learning session.

The following section reviews related work on the evaluation of Learning Management Systems 
(LMS) and LBML, as well as on trajectory analysis and visual analytics. We then introduce the study 
design with three different groups learning at two different locations. Using data collected during 
these learning sessions, it is then described how trajectory analyses can be utilized to evaluate LBML. 
The paper concludes with a discussion and an outlook on future work.

ReLATed woRK

This section provides an overview of the literature on evaluating learning management systems (LMS) 
and LBML, as well as of methods for trajectory analysis of moving objects, including techniques 
for visual analytics of spatio-temporal data and map-based representation of space-time data in two 
and three dimensions.

evaluation of Learning Management Systems
According to Szabo (2002), an LMS can be seen as a framework that unites and manages all aspects 
of the learning process. This framework yields several types of functions such as instructional content 
management, learning or training goal assessment, learning progress tracking and reporting of its 
data, as well as supervising the complete learning process. One important benefit of an LMS is the 
opportunity of providing lessons based on the individual student’s learning progress (Szabo, 2002).

With the evolutionary growth of both, LMS and the tracking of students’ performance, large 
data collections have become available. A similar evolution of growing datasets (often referred to as 
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“big data”) is known from other fields, such as social media, or payment systems and web tracking 
analytics (Siemens & Baker, 2012). A common characteristic of these data collections is the high level 
of detail. Thus, the goal of “big data” analysts is to detect patterns in these datasets to recommend 
allocations of resources, activities, or people (Duval, 2011).

Data analysis approaches involving the analyst (e.g., the teacher or learner) in the process, give 
her the advantage of familiarizing herself with the data and therefore being able to conduct a more 
meaningful analysis and interpretation (Duval, 2011). Thus, the analysis of data collected with LMS 
may help teachers make better choices that lead to improved learning outcomes (Szabo, 2002). Both, 
visualizations showing the activity of individual learners, and those visualizations for teacher-defined 
tasks, can help to evaluate the learning progress (Duval, 2011).

In contrast to conventional LMS described above, the systems supporting the management of 
LBML, for example, the OMLETH platform (Sailer, Kiefer, & Raubal, 2015), should additionally 
support the analysis and evaluation of environmental spatial and spatio-temporal data of the learners’ 
movement, recorded by mobile devices. Such techniques can be used not only for assessing students—
when, where and what functionality of the LMS they have used—but also for improving the teachers’ 
production and reflection process in preparation of the following lesson.

evaluation of Location-based Mobile Learning
Vavoula and Sharples (2009) proposed six challenges in evaluating mobile learning: capturing and 
analysing learning in context and across contexts, measuring mobile learning processes and outcomes, 
respecting learner/participant privacy, assessing mobile technology utility and usability, considering 
the wider organisational and socio-cultural context of learning, and assessing (in)formality.

Several researchers have reported on user evaluations of LBML, typically utilizing methods 
known from classical usability engineering, such as short questionnaires, semi-structured interviews 
on users’ experiences (Naismith, Sharples, & Ting, 2005), or evaluations through each LBML peer 
group presenting their findings in front of the class, as well as through cross-team interviews and 
written short reports (Klopfer & Squire, 2008). While these evaluation methods typically provide 
data of high quality, they require a high effort for both learners and teachers, thus not scaling up to 
large groups of learners.

Some studies have specifically focused on the evaluation of the learners’ spatial skills. Since 
students in LBML navigate in outdoor environments, these skills are highly relevant here, including 
the understanding of cartographic maps, orientation and wayfinding capabilities, or general spatial 
thinking. For instance, Bartoschek, Schwering, Li, and Münzer (2013) found in a study on a navigation 
game (Ori-Gami) that the interaction with the map was more intense for children who made more 
errors in orientation and wayfinding. Those errors, as well as the average distance and speed to find 
the right way, were determined by visually analysing GPS tracks. We argue here that spatio-temporal 
analyses can also help to evaluate LBML with learning objectives different from spatial thinking. 
The Ori-Gami example underlines the necessity to integrate spatio-temporal analysis functionality 
into LBML platforms, a suggestion which has also been made in a workshop paper by the authors of 
this article (Sailer, Kiefer, Schito, & Raubal, 2015).

Trajectory Analysis of Moving objects
Different methods for the analysis of physical activity and movement of objects, animals or humans 
have been developed. The structure of such movement tracks can be described by three components: 
space (where), time (when), and objects (what) (G. Andrienko et al., 2007; Peuquet & Duan, 1995). 
A combination of “when” and “where” describes the set of objects which are present at a given 
location at a given time. “When” and “what” together describe the location of a given object at a 
given time, and “where” and “what” determine the time that a given object occupied a given location 
(G. Andrienko, Andrienko, Bak, Keim, & Wrobel, 2013). Analysis tasks for spatio-temporal data are 
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based on the types of changes occurring over time: existential changes, changes of spatial properties 
(location, shape) and thematic properties (attribute values) (G. Andrienko et al., 2013).

Methods for trajectory analysis have mainly been proposed in the geographic data mining 
community (Miller & Han, 2009), where these methods have been applied to a number of fields, such 
as wayfinding (Schmid, Richter, & Laube, 2009) and tourism research (Vu, Li, Law, & Ye, 2015; 
Y.-T. Zheng, Zha, & Chua, 2011).

G. Andrienko and Andrienko (2009) identified three different types of movement data and 
related analysis tasks: movements of a single object (e.g., one pedestrian’s navigation from A to B), 
simultaneous movements of multiple unrelated objects (e.g., the daily commuting behavior of all 
inhabitants of a city), and simultaneous movements of multiple related objects (e.g., an animal herd 
looking for food). The typical analysis goals, tasks, and methods for these three types differ, and 
most of the papers found in the literature fall into exactly one of these three categories. We will use 
this categorization later in this article.

For the movement of a single object, G. Andrienko, Andrienko, Burch, and Weiskopf (2012) 
describe the following typical analysis tasks: extracting significant places, times and durations of 
visits, typical trips, their times and durations, deviations, and their reasons. They distinguish between 
single events and trajectories (temporally ordered sequences of positions).

For analyzing multiple unrelated objects, G. Andrienko and Andrienko (2009) suggest tasks about 
the use of space in general, for instance, the degree of accessibility or connection between objects. 
Other typical analysis tasks include the analysis of major flows or typical routes between places. 
Pattern analyses, such as concentration or dispersion, convergence or divergence, and propagation 
of movement characteristics are further types.

The analysis of relative movement of related objects investigates patterns, such as approaching, 
encountering, following, evading, etc. For related objects, the spatial proximity at a given time can 
be an indication for the interaction between these objects (G. Andrienko & Andrienko, 2009). For 
instance, the RElative MOtion (REMO) approach proposed by Laube, van Kreveld, and Imfeld (2005) 
targets the analysis of motion based on geospatial lifelines of related moving objects. Motion patterns 
help to answer questions, such as the identification of an alpha animal in a pack of GPS-collared 
wolves, or the detection of strategic and game-play behavior of two football teams. The basic idea 
of the analysis is to compare the motion attributes of point objects over space and time, and thus to 
relate one object’s motion to the motion of all others.

In the following, we consider spatio-temporal properties of both, single trajectories (i.e., one 
learner moving alone) and multiple trajectories (i.e., several learners moving either together as a 
group, or independent of each other in the same area).

Visual Analytics of Spatio-Temporal data
The general aim of data analysis is to reveal unknown information. Exploratory approaches to data 
analysis are inductive. They start with an inspection of the data in order to get to know the phenomena 
and to develop a theory. By analyzing data visually, humans can benefit from the fact that their 
perception is primarily determined by the visual sense (Krygier, 1994). The primacy of sight allows 
for effective visual analysis and thus, enables the human capability of drawing conclusions by directly 
interacting with the data (Keim, 2002).

Research about the exploration of map-based spatio-temporal data dates back to the 1970s (Tobler, 
1970). The author focused his studies on problems of urban growth and solved it with map-based 
animation techniques. Similar techniques to explore patterns of road traffic accidents were used in 
Moellering (1976). Meanwhile a number of studies have examined the use of dynamic visualization 
in spatio-temporal cartographic representation (G. Andrienko & Andrienko, 1999; N. Andrienko 
et al., 2003; Brunsdon, Corcoran, & Higgs, 2007; Koussoulakou & Kraak, 1992; Shepherd, 1995).

Large environmental datasets, such as human movement tracks, were seen as a major challenge 
in 1999 for geographic visualization, knowledge discovery in databases, as well as information 
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sciences in general (MacEachren, Wachowicz, Edsall, Haug, & Masters, 1999). Based on a theoretical 
framework from the early 1990s, considerations were made about how representations of such 
knowledge discovery in databases can be used for the objectives of the visualization and the degree 
of interactivity (MacEachren et al., 1999). However, there was still a lack of methods for transforming 
the geospatial data into visually comprehensible information. This was later targeted by the research 
field of Geovisualization which utilizes methods from several fields, such as digital cartography, 
Geographic Information Systems (GIS), and Remote Sensing, including techniques, such as image 
analysis, information visualization, and exploratory data analysis (MacEachren & Kraak, 2001).

The term visual analytics was used for the first time in the report Illuminate the path: The Research 
and Development Agenda for Visual Analytics (Cook & Thomas, 2005). Based on the technique of 
visual data exploration, visual analytics is defined as visual data mining (G. Andrienko et al., 2013). 
As mentioned above in the section on the Evaluation of LMS, not only sensor data, social media big 
data or other large datasets can be analyzed by human-centered visual analytics or algorithm-centered 
data mining, but also data collected with LMS and other educational software. Another example is 
crime analysis, a field in which the map-based visualization of the spatial and temporal distribution 
of criminal incidents is a common method to detect crime patterns (Brunsdon et al., 2007).

Visual analytics tools provide solutions which enable analysts to focus their full perceptual and 
cognitive capabilities during their analytical work (G. Andrienko et al., 2007). Using these human 
capabilities, advanced computational capabilities have the task to augment their discovery process. 
In our context, we use several map-based techniques to enhance the analysis. We will use map-based 
representations in two as well as in three dimensions.

Previous research exploring space-time patterns in two dimensions (2D) has focused on the 
benefits of static maps as well as interactive dynamic visualization techniques (Brunsdon et al., 2007; 
Harrower & Fabrikant, 2008). Further techniques suitable for the visualization of changes include 
time labels or representation of the age, object or other attribute values by coloring. Further, querying 
(lookup and filtering) or map-based animation over time are often demanding techniques. Temporal 
animated maps, which are sometimes called movie maps, and the concepts which are known as “play-
back” from video simulation, can help to understand the temporal evolution of the data. However, it 
has to be taken into account that maximal cognitive capacity of information per time-unit is limited 
(N. Andrienko et al., 2003; Harrower & Fabrikant, 2008).

The space-time cube representation is an information visualization technique in which spatio-
temporal data records are mapped in three dimensions (3D) into a cube. These cube representations 
benefit users when analyzing complex spatio-temporal patterns (Kristensson et al., 2009). The benefit 
of using space-time cube representations is that temporal as well as spatial information are displayed 
simultaneously. This effect is difficult to achieve in other representations. A consequence and further 
advantage of this effect is that speed can also be explored simultaneously. In this representation, where 
time represents the vertical component, gently sloping path segments indicate fast movement, while 
steep segments correspond to slow motion. (G. Andrienko & Andrienko, 1999; N. Andrienko et al., 
2003; Kristensson et al., 2009)

Class Planning and Follow-Up
Good teaching requires effective teaching methods (Borich, 2013; Dubs, 2009), however, to guarantee 
effectiveness, a solid class planning is necessary. In this respect, the class structure is an important key 
factor that further contains the announcement and monitoring of verifiable learning goals (Schneider 
& Stern, 2010). In addition, a class structure and tasks related to the students’ real lives support them 
in building their own knowledge structure (Schneider & Stern, 2010). Thus, many teachers structure 
the learning content into several verifiable tasks that—individually or together—cover the learning 
goals defined.

A solid class planning requires teachers to reflect their teaching approach including the definition 
of learning goals intensively (Borich, 2013). This reflection process can be supported by actively 
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switching between the student’s and the teacher’s perspective, whereas learning goals, tasks, and 
teaching methods are first reflected and then evaluated with regard to teaching and learning. Evaluating 
the effects first and then implementing the findings in the follow-up supports teachers to improve 
their teaching in the future (Angelo & Cross, 1993). Because every kind of teaching analysis fosters 
reflection, also visual analytics can contribute to an improvement of future learning tasks. Instead of 
relying on feedback or on abstract results of computational approaches, visual analytics of learner’s 
trajectories can provide teachers with more accurate and unbiased information to evaluate a learning 
unit.

STUdy deSIGN

As described in the previous section, we structure our discussions in this article based on the 
classification of movement analysis tasks by G. Andrienko and Andrienko (2009): analysis of the 
movement of single learners, analysis of the movement of multiple unrelated learners, and analysis of 
the movement of multiple related learners, i.e., learners moving in a group. The studies were designed 
to collect data that is representative for all three categories.

This article presents first results of an ongoing exploratory research study. We decided to focus 
on three samples gathered at two different locations, which illustrate the different movement patterns 
addressing the research question. Participants were split into learning groups belonging to the same 
school class, while the classes were chosen by teachers interested in LBML. The dates of the study 
were chosen without consideration of environmental conditions. In the following, we will explain the 
different sites, procedures, participants, and evaluation techniques—including an explanation of data 
and software—before we continue with the map-based visual analytics and discussion.

Sites
Two very different sites were selected for the study: a rural site (“Jurapark Aargau”, first run) and an 
urban site (Zurich, second and third run).

The rural site is located next to the village of Hottwil in the Jurapark Aargau, Switzerland. The 
single learning units were allocated on the hillside of the valley of Mettau. The site is rather agricultural 
and mostly covered with grass, providing a perfect overview over the valley. The opposite valley, the 
buildings of Hottwil, and the opposite mountain ridge represent typical landmarks supporting the 
wayfinding. The goal at this site was to find the seven learning units in a predefined order. The overall 
learning objective of this round-trip consisted of getting an overview of the park. The tasks varied 
between the single learning units and consisted of story-reading a text followed by peer-discussions, 
or comparing an image with the environment and describing the differences, or exploring elements 
of the physical environment and tagging them geo-spatially on an interactive map.

The urban city center of Zurich, Switzerland, delimited by the central business district and the old 
town, represented the second site of our studies. The area consists of many old buildings, cozy cafés, 
narrow alleys, and idyllic parks. Most of the streets are only open for public transport or pedestrians. 
The scope of the round-trip consisted of 13 single learning tasks which needed to be completed in 
a predefined order. The tasks in this case included story-reading, area exploration, analyzing, and 
discussing with the aim of perceiving and studying the historic as well as the current appearance of 
the city similar to “Jurapark Aargau”.

Procedure, Participants, Material, Hardware and Software
Classes from three different high schools in the city of Zurich have participated in this ongoing 
study. One run was in Jurapark Aargau, the two other runs were in Zurich, where these two used 
the same learning module. Each run was conducted on different days. The LBML learning modules 
were integrated into the activities of a training camp on the one, and in those of regular school 
classes on the other hand. Participation was not graded. The participants were briefly introduced to 
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the OMLETH interface and then either randomly assigned to a group of learners, or designated to 
proceed the study as a single learner. There was no intervention from the study supervisors when 
the composition of the learner groups changed during the run. Participants were able to meet others 
who were not necessarily part of their own group; these meetings and the resulting group behavior 
were one specific focus of this study. There was no pressure to fulfill all the learning units within 
maximum duration. Participants filled in an online survey of approximately 5 minutes directly after 
the run to reflect about their run (learning features, technology, and general impressions).

Participants were asked to use their own mobile devices for the run. They were advised to fully 
charge the smartphone batteries to guarantee operational reliability, and also to ensure the availability 
of 30 Mbytes for mobile data communication. Table 1 presents the specified properties per run, which 
are quite heterogeneous, as are the participant samples. This was intended due to the exploratory 
nature of the study.

To obtain the spatial footprint of movement tracks of all learners, or learner groups respectively, 
triples of location, user, and timestamp were recorded using the HTML5 Geolocation API with the 
streaming frequency parameter set per default to 0.5 Hz (one record per two seconds). An API-method 
was used to register a function that was called each time the position of the device changed. If the 
function is successful, it returns a coordinates object of the current location of the device. Sometimes 
this function takes several seconds. Because there is no built-in functionality in browser web apps 
for seamless position tracking, the corresponding application needs to be in use constantly to record 
the position continuously. Closing the application or changing the screen’s status to sleeping mode 
stops the recording (Lubbers, Albers, & Salim, 2010). This factor resulted in time gaps as well as 
spatial gaps, as will be shown in the analysis sections.

Two software applications were used for the analysis of the spatio-temporal trajectories:
First, we used V-Analytics1 to bundle a number of approaches, techniques, and methods to create 

visual analytics visualizations for spatial and temporal data (Sakr et al., 2011). This includes, for 
instance, the space-time cube technique for visualizing the movement tracks in three dimensions with 
the time plotted on the z-axis (Sakr et al., 2011). Then, we used the commercial GIS ArcGIS (by Esri2) 
to combine different kinds of geo web services3 (such as, satellite imagery, street information, or maps 
from OpenStreetMap), facilitating the analysis of the trajectories with respect to the geographical 
context (Tang & Selwood, 2003).

Table 1. Metadata of the three study runs

Site
Participants 

/ Tracked 
datasets

Group size Distribution of 
tracking devices Procedure Conditions

First Run Jurapark 
Aaragau

22 students 
between 15 and 
18 years of age 
/ 11 datasets

Group of two One smartphone 
or tablet per group

Briefed to start 
separated and 
limited to 90 
minutes

Early 
afternoon, 
approx. 20°C, 
dry

Second 
Run

City of 
Zurich

6 students 
between 18 and 
21 years of age 
and two adults 
/ 4 datasets

All together
One smartphone 
or tablet per 
participant

Group size at 
participants’ 
choice, limited to 
120 minutes

Late 
afternoon, 
approx. 33°C, 
dry

Third 
Run

City of 
Zurich

21 students 
between 15 and 
17 years of age 
/ 12 datasets

Random 
distribution, 
9 single 
learners, 
12 group 
learners in 4 
groups

One smartphone 
or tablet per group 
or single learner

Briefed to start 
separated at 
predefined 
learning unit’s 
location 
Limited to 60 
minutes

Mid-morning, 
approx. 22°C, 
dry
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The next section describes how we used these applications for map-based visual analytics of 
spatio-temporal data in LBML.

VISUAL ANALyTICS oF LeARNeRS’ MoVeMeNT

The goal of the visual analytics analyses was to find interesting LBML-related events in the spatio-temporal 
trajectories by visualizing them in a map-based context. We structure this section based on the three 
movement analysis types (G. Andrienko & Andrienko, 2009). For each section, we start with 2D-map-
based visual analytics and continue with the 3D-map-based technique based on space-time cubes.

Analytics of Single Learners’ Movement
A feasible method for analyzing learners’ movement data is by visualizing the data on a 2D map. A 
quick look on the map reveals whether the students fulfilled the teacher’s demand or expectations of 
following the optimal path. Irregularities indicate that something must have happened that needs a 
more profound analysis. However, finding the reason for an irregularity is not always evident (e.g., 
incorrect location of the learning unit, incorrect unit order, etc.).

Paths can be visualized as collections of point representations (point cloud; see Figure 1) or as 
trajectories (sequence of point representations; see Figure 4). When visualizing only the point cloud, the 
sequence cannot be interpreted with certainty. Further analysis or interactive techniques are required.

A static 2D cartographic representation requires a map to facilitate orientation and to provide 
context information to understand the learning unit representations (polygons) as well as the learner’s 
recorded trajectory. In Figure 1, the trajectories of two single learners are displayed as two single-
colored point clouds on two static 2D maps. The visualization shows obvious facts: every spot 
containing a learning unit had been visited and learner A followed mostly the path intended by the 
teacher. Only between learning units 5 and 7, some uncertainties still remain.

The static 2D map cannot provide information about start and end point, the time the learner spent 
at the learning unit, and in which direction she walked. Later, queries revealed that the single learner 

Figure 1. 1st Study, “Jurapark Aargau”: The trajectories of two single learners executing a field trip are visualized as two single-
colored point clouds on 2D maps. The learning units are numbered and marked with pink polygons. Both, single learner A (blue) 
and single learner B (brown) visited every learning unit, however, in this static 2D map representation it is not possible to determine 
at which learning unit the field trip started or whether the learning units were visited in ascending or descending order (software: 
© ArcGIS for Desktop 10.3, Esri; basemap: © OpenStreetMap)
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started at learning unit 1 and proceeded counterclockwise ending again at learning unit 1. But, incremental 
querying can be very time-consuming. Therefore, coloring the path based on time can be very efficient 
to retrieve information about the temporal course visually. Figure 2 shows a “color ramp” symbolization 
based on the timestamp attribute where all GPS points recorded during the first 10 minutes are colored 
red. Each additional 10 minutes are represented in another color. What is missing in this representation 
is clear evidence about the learner’s walking speed and the time consumption spent at the different 
learning units. Nevertheless, it can be derived based on the steadily recorded points—which indicate a 

Figure 2. 1st Study, “Jurapark Aargau”: The trajectory of single learner A (see Figure 1) executing a field trip is visualized as a 
point cloud on a 2D map. The time elapsed is shown by different colors in intervals of 10 minutes. Although the representation 
may not provide clear evidence about the walking speed and the exact time the single learner spent at the different learning units, 
the point distribution indicates that the learner walked steadily and solved the tasks quickly (software: © ArcGIS for Desktop 
10.3, Esri; basemap: © OpenStreetMap)
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steady speed—that the single learner spent less than 10 minutes at learning unit 2. Thus, teachers can 
assert that the single learner solved the task at learning unit 2 quickly.

For a quick overview, 2D-map-based analyses as described, are sufficient, however they cannot 
provide a comprehensive description of the learner’s activities.

Temporal animation yields an alternative way of visualizing the trajectory in 2D, an interactive 
technique which visualizes changes over time by moving symbols. Animations are, for instance, 
provided by GIS and are configurable regarding start and end time, the analyzed time interval, and the 
speed. Compared to the static map, this function can be advantageous because temporal information 
becomes visible more intuitively. However, a good animation configuration can also be challenging 
(Harrower & Fabrikant, 2008).

With the described techniques (coloring, animation), we have gained first insights on the learner’s 
activity. The next section focuses on specific questions about wayfinding issues, speed recognition, 
and missing data in a single learner’s trajectory as well as relatedness and unrelatedness of multiple 
learners’ trajectories.

Wayfinding
Wayfinding is a behavior that describes a purposeful, directed and motivated movement from an 
origin to a specific distant destination in large-scale spaces such as landscapes, cities, and buildings 
(Golledge, 1999). People need various spatial and cognitive abilities to find their way. LBML typically 
requires learners to explore and plan a route at their own choice and responsibility. Research in the 
field of spatial cognition has shown that people use landmarks (known also as Points Of Interests 
(POI)) during spatial reasoning and communication of routes, therefore such landmarks can also be 
relevant for this study (Raubal & Winter, 2002).

Figure 1 shows that the trajectories between learning unit 1 and 3 of learners A and B fit well 
to the path represented in the map. The map demonstrates that there were not many other paths 
available, that the existing path would probably turn into the obvious route in relation to the decision 
makers (learners). The resulting movement tracks support this hypothesis. Therefore, it seems that 
wayfinding was not very challenging in the beginning of this field trip.

Comparing learner A’s with learner B’s track (Figure 1), a difference in the chosen route can be 
observed after learning unit 4. Learner A took the left and short path to learning unit 5, while learner 
B took the path to the right at the junction leading to a detour. There could be several reasons for these 
different route choices, such as differences in spatial abilities or subjective preferences (e.g., w.r.t. 
slope) for one of the route options in the decision situation (Giannopoulos, Kiefer, Raubal, Richter, 
& Thrash, 2014). If the route choice matters in relation to the learning experience, the teacher could 
for instance add further learning units as landmarks.

Choosing a constructivist and learner-centered approach of free exploration and self-navigation, 
the OMLETH platform does not offer an option to propose and sketch a predefined route for teachers. 
Instead, teachers plan the distribution of the learning units together with a mentally planned virtual path 
which they hope students are going to follow. Students navigate between learning units with a visualization 
showing a basemap and polygons, which means that they use the street network, cardinal directions, and/
or landmarks included in the basemap for navigation. During the teacher’s evaluation the spatial analysis 
can reveal deviations of the chosen path from the path the teacher had in mind, such as detours or false 
directions. These observations and analyses are of significance for teachers to learn from their learners’ 
walking behavior for future learning module designs. Besides the improvement of the lessons, the analysis 
of a single learner’s track also enables the teacher to provide help to specific learners.

A particular observation in human movement tracks is the existence of zig-zag paths. A zig-zag 
path means that the trajectory of a single learner shows a movement sequence of frequent direction 
changes. This kind of behavior is more often observed for children who make more errors in orientation 
and wayfinding due to difficulties in connecting the real-world environment to its spatial representation 
on a base map (Bartoschek et al., 2013).
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Again comparing learner A with learner B during learning unit 6 (Figure 1), we see that learner 
A took a “zig-zag“-like path directly to the main road underneath, while learner B took a narrow 
path parallel to the main road. The analytics of such a “zig-zag” path segment could be an indicator 
for orientation problems or uncertainty, meaning that the first learner had problems in map reading 
or wayfinding. Probably the learner made purposeful “zig-zag” movements to tackle the elevation 
difference when walking down towards the road. These assumptions show that it is difficult to draw 
a final conclusion in this example.

Figure 3 shows a single learner’s track during the second study in Zurich. Following this single 
learner from the start at learning unit 1 on the way to learning unit 2, an unexpected distribution of 

Figure 3. 2nd Study, “Legends of Zurich”: Single learner executing a field trip. The points tracked are represented as a unicolored 
point cloud on a 2D map whereas the learning units are numbered and marked with pink polygons (software: © ArcGIS for Desktop 
10.3, Esri; basemap: © OpenStreetMap)
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data records can be identified. Instead of along the river, the records can be seen inside the eastern 
building area. The reason for this effect could be determined by the post-interview: due to the tropical 
heat that afternoon, the learner searched for a cooler route in the shadow of the narrow road. However, 
this detour caused a short time delay behind the predicted arrival time at learning unit 2.

Another unexpected event can be detected at learning unit 4 (see Figure 3) where students had 
the task of exploring the surrounding inside the virtual border of the learning units: the learner stayed 
at that place longer than expected and mostly at the border or next to the learning unit area. The 
learner’s feedback in the interview revealed that the time duration was caused not due to profound 
task exploring, but due to the presence of a famous song writer taking a video recording of her song. 
Consequently, solving the task seriously was very challenging due to the distraction by the singer. 
Finally, the learner could not finish the whole learning module in the given time and had to shorten 
the way by proceeding from learning unit 6 directly to learning units 12 and 13.

What can a teacher conclude from this? Good planning is essential. Environmental factors and 
time matter. The teacher should carefully consider on which factors could influence and disturb 

Figure 4. 3rd Study, “Legends of Zurich”: The path of a single learner is represented as a continuous trajectory and shows her 
speed. The trajectory is colored in two categories where blue segments indicate the use of public transport (fast) and orange 
segments indicate walking (slow). The learning units are numbered and marked with pink polygons. (software: © ArcGIS for 
Desktop 10.3, Esri; basemap: © OpenStreetMap)
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the single learning units (Sailer, Schito, et al., 2015). The disruptive effects of this run (informal 
learning environments by Tan, Liu, and Burkle (2013)) might motivate and engage the learners to 
gladly execute these units again. Therefore, space for repetition to accomplish the tasks and achieve 
the learning goals should be provided. Finally, a follow up is also essential with a summary and a 
reflection phase (debriefing) after the outdoor learning module.

Speed
Speed is a property of the movement data. The rate of the motion, change, or activity is calculated 
by the distance of time intervals or the duration of distance intervals (Buchin, Driemel, van Kreveld, 
& Sacristán, 2010).

Figure 4 shows an individual learner’s speed trajectory recorded during the third study (Zurich). 
The orange color indicates a speed between 0 and 2 meters per second (walking speed), the blue color 
a speed between 2 and 10 meters per second. The learner started the trip at the bottom-right corner, 
moved towards learning unit 1, and accomplished the module until unit 7. The evaluation of this 
speed trajectory shows two stages: first, a very fast movement towards unit 1 by displaying mostly 
blue segments with short orange (slow) interruptions, and second orange segments indicating slow 
walking speed. The characteristics of the first stage are typical for public transport systems, such as 
trams. With the map-based context, single stations and tracks of the tram line can be identified along 
the learner’s route. Afterwards, the learner has moved from learning unit 1 to units 2, 4, 5, 6, and 7 
very continuously at the rate of walking speed.

To sum up, the trajectory suggests that the learner initially took the tram to get to the start of the 
module and then reached all the learning units by walking. The post interviews verified this assumption.

No Data
One characteristic of motion tracks is that they consist of data recorded at distinct times (rather than 
continuous trajectories). There are moments in time for which no data are available (G. Andrienko 
et al., 2013), either due to the recording frequency of the device and app configuration (such as, 0.5 
Hz), or due to limitations of the positioning technology (such as, limited GPS availability).

For instance, this observation is made for learner A in Figure 1, where at the curve of the small 
road after learning unit 5 towards learning unit 6, a gap of no data has appeared, although the learner 
must have passed this section.

In our case, in post-study interviews the app configuration could be identified as the main reason: 
as described above, (see Procedure, Subjects and Material), the app did not record data when the device 
was switched to sleeping mode or when the app was switched to the background. Possible reasons 
for this app usage behavior include: the learner was sure of his wayfinding abilities and preferred 
walking without using the smartphone; the learner switched to another application for an unknown 
reason; or third, the learner was worried about the battery life of the mobile device.

Movement and Speed in the Space-Time Cube
The visualization in 3D has the main advantage that it enables us to represent not only space, but also 
time. Refer, for instance, to Figure 5 for an example: the space-time cube is a perspective view of a 
three-dimensional representation over an underlying map where two horizontal dimensions represent 
the spatial extent, and the vertical dimension visualizes the course of time. The temporal axis is oriented 
from the bottom to the top, starting from the first space-time position (G. Andrienko et al., 2013).

Figure 5 shows similar findings as described above for the 2D representation, such as 
counterclockwise movement, no long stops or breaks, and confirmed the constant use of the app 
through the seamless record collection with the same walking speed.

This speed can be detected as the slope of the movement track in the space-time cube. The steeper 
the track, the slower the speed of the walking object. A vertical line segment indicates a stable and 
remaining position of the object. Such vertical segments can be detected in Figure 5, for instance 
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inside learning unit 4 (the space-time stations, refer to Miller (2005)). Shorter and longer occupation 
in these learning units can be analyzed through this visualization technique.

To explore single parts of the trajectory in more detail, several interaction techniques are proposed: 
a temporal focusing by expanding the vertical time component, a moving or zooming of the cube, 
to search for more precise effects, and a rotating of the cube to the view from another geographic 
direction (G. Andrienko et al., 2013).

Analytics of Multiple Learners’ Movement
Analyzing the tracks of multiple learners can reveal further information useful for the teacher. Multiple 
learners can be either unrelated or related to each other, which is likely to effect the individual behavior, 
cause different movement patterns, and thus, requires particular analysis foci.

Movement of Multiple Unrelated Learners
LBML happens unrelated if learners are spatially, temporally, or spatio-temporally separated from 
each other and do not communicate or work together (e.g., through a chat) which would influence their 
individual learning process. It is difficult for teachers to ascertain that LBML took place unrelatedly, 
especially when working with visual analysis. For instance, what is the minimum spatial distance 
required? Obviously, ensuring unrelatedness in LBML requires teachers to be conscious about the 
class planning and the LBML unit conduct.

Besides the planning, also the movement analysis of multiple unrelated learners is challenging. 
Large datasets of tracked points can support the identification of users who showed similar movement, 
e.g., Yuan and Raubal (2014) and, based on these similarities, detect clusters of similar behavior. 
Nevertheless, although providing advice to solve the tasks independently, humans tend to organize in 
groups for social reasons and to profit from their peers’ effort. In this case, however, the decisions taken 
are influenced by others. Thus, it must be analyzed first, if a possible relatedness could be detected.

Maps offer limited options for detecting temporal relatedness. Both Figure 6 and Figure 7 show 
the tracks of the run in “Jurapark Aargau”. In interactive 2D maps, single paths can be blended in and 
out and often allow retrieval of additional information stored in the underlying geodatabase. Thus, 
interactivity might provide possibilities to enable the analysis of all aggregated trajectory properties 

Figure 5. 1st Study, “Jurapark Aargau”: The trajectory of a single learner’s field trip (left: full extent, right: zoomed extent inside 
learning unit 4) is visualized in a space-time cube. Delimited areas containing learning units are numbered and extruded to 3D 
(software: © ArcScene 9.3, Esri; basemap: © swisstopo)
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for each user. To simplify the visual analysis, individual learners or groups are distinguished using 
different colors. Areas with a high point density could be identified, e.g., through spatial clustering (G. 
Andrienko et al., 2012) as points of interest (POI) or as a popular route. Single points or path segments 
can be further colored using a gradient that represents the time course. However, distinguishing 
different levels of brightness or hue (e.g., Figure 2) might be challenging for data analysis when it 
comes to multiple trajectories. Instead, animated paths displaying each user’s position depending on 
the time course could be a feasible approach. Moreover, it can easily be revealed if two learners stood 
close together at the same time. Compared with static maps, interactive tools offer various options 
to support visual analysis.

Figure 6. 1st Study, “Jurapark Aargau”: 11 learners decided to proceed on the field trip on different routes. All tracks are 
differentiated by colors and visualized as point clouds on a static 2D map. Note the dotted straight lines that show evidence of 
positioning problems (software: © ArcGIS for Desktop 10.3, Esri; basemap: © OpenStreetMap)
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In general, Figure 6 shows that the students primarily chose similar paths to complete the field 
trip. The blue learner deviated most from the optimal path. Furthermore, one fork could be found in the 
upper part of Figure 6 where the learners almost evenly decided to proceed to the left or to the right. 
In addition, the almost regularly dotted straight lines could be determined as GPS measurement errors 
that occur during the process of searching for GPS satellites. Assuming that most GPS measurement 
errors occur while the devices are turned on and most time is spent during briefing and debriefing, 
the start and end point could be located within the area of the highest visual dot density in the mid-
right bottom of learning unit 1.

In contrast, the representation shown in Figure 7 is more versatile compared to the 2D map of 
Figure 6 because the evaluator can change the camera settings interactively, thus switching between 
2D and 3D visualization. Furthermore, the tracks of Figure 7 are visualized as a space-time cube. 
Parallel trajectories show that the learners were at the same positions but not at the same time. Similar 
differences indicate that learners were on the way at a more or less similar speed, but conclude the 
spatial unrelatedness to each other at this movement segment. In contrast, tangent or intersecting 
lines show that learners had the opportunity to meet each other because they were at the same place 
at the same time. A shallow slope indicates high movement velocity and vice versa. Vertical lines 
indicate that the learner spent time at the same place (N. Andrienko et al., 2003). The parallel paths 
of the interactive space-time cube of Figure 8 reveal that the learners walked with a similar velocity 
and that the learners were unrelated to each other.

Figure 7. 1st Study, “Jurapark Aargau”: 11 learners executing a field trip are differentiated by color and visualized in a space-time 
cube. Delimited areas containing learning units are numbered and extruded to 3D (software: © ArcScene 10.3, Esri; basemap: 
© swisstopo)
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Analyzing a space-time cube reveals also facts concerning temporal issues. In Figure 8, two tracks 
of the field trip in “Jurapark Aargau” were isolated to make only two learners (blue and orange) visible. 
Visual analysis reveals that the vertical distance between both paths increases over time, however, 
most remarkably at learning unit 4 (brown learning unit on the right margin of Figure 8). Thus, the 
orange learner, who started later, spent more time at learning unit 4 compared to the blue learner.

Movements of Multiple Related Learners
Learning can also occur within a group that pursues the same target. When competences as an 
arrangement of knowledge, skills and attitudes, are applied within a group of learners, several aspects 
can influence learning, such as motivational, social, and cognitive aspects. Motivation can have a 
positive impact on cognition and social aspects such as group cohesion within peers (Wentzel, 1998). 
Improvements in cognitive learning can lead to increased self-confidence which may stimulate again 
the motivation and social skills (responsibility). The whole arrangement of the motivational, social, 
and cognitive dimensions and its interrelations for group-based learning could support the distribution 
of cognition across and between individuals (Hattie, 2013; Salomon, 1993; Strijbos, 2004).

Consequently, we believe that the resulting movement patterns of multiple physically related 
learners may indicate motivational, cognitive, and social aspects within a group. The trendsetter motion 
pattern, for instance, was introduced by Laube et al. (2005) as one trend-setting moving point object 
that anticipates the motion of n others with the REMO approach. Once a trendsetter has been detected 
as leader, the other group members act as followers. Followers can indeed be interested in the LBML 

Figure 8. 1st Study, “Jurapark Aargau”: Learner A (blue) and Learner B (orange) (see Figure 1) executing a field trip are visualized 
in a space-time cube. Delimited areas containing learning units are numbered and extruded to 3D (software: © ArcScene 10.3, 
Esri; basemap: © swisstopo)
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process and consequently like to adapt the leader’s behavior. Other types of followers, however, prefer 
to evade the responsibility of contributing to the group’s success. One possible assumption here is that 
interested learners are located close to the leader, moving at the same speed along the route, while 
less interested followers are located more distant to the group leader. If these assumptions hold, the 
speed pattern may provide evidence for distinguishing between interested and uninterested learners.

Both Figure 9 and Figure 10 (full extent) show the tracks of the second run—once as a point 
cloud on a 2D map and once as a space-time cube. The learners were advised to start at learning unit 
1 and progress increasingly to learning unit 13. By their own choice, the group remained spatially 

Figure 9. 2nd Study, “Legends of Zurich”: The tracks of 4 learners are differentiated by colors and visualized as point clouds on 
a 2D map. The learning units are numbered and marked with pink polygons. Note that the learning units 7 and 11 have not been 
visited (software: © ArcGIS for Desktop 10.3, Esri; basemap: © OpenStreetMap)
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close during the whole procedure. The visual analysis of Figure 9 shows a path-like pattern with 
accumulated points at the different spots. The detour between learning unit 1 and 2 already observed 
for a single learner in Figure 3 can also be detected of the whole group. The reason is known, but 
who was the decision-maker (trend-setter) within this group? Unfortunately, due to missing records, 
we cannot approach this question closer.

The visual analysis of the space-time cube shown in Figure 10 demonstrates that all learners 
moved as a group. However, there are notable gaps in each track. For instance, the green learner was 
not tracked after one third of the time had elapsed.

It could be interesting for the analyst to detect the trendsetter who influenced the other learners 
concerning locomotion, navigation, decision-making about stops, speed, or directions. However, 
unilateral leadership (in Figure 10; adult = yellow) could be obstructive to the balanced support and 
character building of other learners. By zooming close to the single trajectories, for instance at learning 
unit 2 (Figure 10 zoomed extend to the learning unit 2), the yellow learner made the breakaway first 
and is often two to four seconds earlier than the rest of the group, thus, he would hinder other learners 
to consolidate leadership skills. Thus, these findings could help teachers to create tasks that address 
diverse learner characteristics. Tracking gaps, however, do not allow to derive a statement about the 
universal leading role of the yellow learner.

Beside the trendsetter motion pattern, Laube et al. (2005) described two other patterns. We could 
not detect the concurrence motion pattern with its crossing trajectories in our data. For teachers, 
this motion pattern would also be helpful to improve the tasks given to avoid concurrence and thus 
to foster cooperative learning. However, we found the constant motion pattern with its non-cutting 
trajectories in all three runs during locomotion from one to another spot. Teachers might be interested 
in knowing who acts as quiet follower in order to foster this specific learner by adapting the tasks or 
by giving her the advice to take the leading role.

Finally, every kind of learning module evaluation contributes to recognizing good and weak points 
in the learning module. These findings are relevant for improving the subsequent learning module. 
Thus, learning module evaluation is crucial to keep or raise the teaching quality.

Figure 10. 2nd Study, “Legends of Zurich”: 4 tracks of learners executing a field trip (left: full extent, right: zoomed extent to 
learning unit 2) are differentiated by color and visualized in a space-time cube. One tracked adult is represented by a yellow 
track. Delimited areas containing a learning unit are marked with pink polygons, whereas the learning unit 2 is highlighted by 
labeling (left). A closer look at the learning unit 2 (right) shows that the adult often leads the group (software: © ArcScene 10.3, 
Esri; basemap: © swisstopo)
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Revelation of Misdirection or Cheating
Another type of pattern we specifically found in our data is related to misdirection or cheating. In 
order to improve LBML units, evaluators are interested in the reasons that led to misdirection. Such 
reasons could comprise errors in the task description, task misunderstanding, technical failure, and 
even cheating. Of course, distinguishing between deliberate and unintentional actions based on visual 
data analysis is a balancing act. Neither, mischief should be presumed per se.

Figure 11 shows no data records towards and away from learning unit 3 of single learners and 
group-based learners. It seems that all learners skipped this unit 3 even though it should have been 
followed consecutively after unit 2. The analysis revealed that after completing the task at unit 2, 
learners were misdirected by a wrong configuration of the app which led them to unit 4 instead. Thus, 
the tracks did not correspond to the evaluator’s expectation due to a conceptual error (type error) in 
the design of learning unit 2.

Figure 11. 3rd Study, “Legends of Zurich”: The tracks of 12 single learners and groups are differentiated by colors and visualized 
as point clouds on a 2D map. The learning units are numbered and marked with pink polygons. The distinction between the colors 
highlights the spatial clustering, however, it is not possible to provide evidence about the exact path walked over time (software: 
© ArcGIS for Desktop 10.3, Esri; basemap:© OpenStreetMap)
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Another misdirection can be found in Figure 12 which displays the same run. By analyzing 
the learners’ tracks in a space-time cube, it became evident that two teams left the study area much 
earlier compared to all other learners, although they had the task to execute all the learning units. 
After having arrived at the target location, they solved few tasks independently without conducting 
the whole round trip, and took public transportation to the way home southwards (to the left border 
of Figure 12). Interestingly, the orange/magenta team decided to take the same public transportation 
route as the light-blue/dark-blue/purple/yellow team did a few minutes earlier. Coincidence or purpose, 
the evaluation reveals this visually by allowing for comparison to other tracks, but does not give the 
reasons for this early abort, neither for unintentional misdirection nor for deliberate cheating.

dISCUSSIoN ANd oUTLooK

Advantages and Limitations of Using Visual Analytics
We proposed visual analytics as a spatio-temporal analysis method for teachers to evaluate LBML 
based on recorded learner trajectories. Visual analytics fosters a hands-on and accessible approach 
to analyze spatial data. It is based on the fact that human perception is mainly determined by the 
visual sense (Krygier, 1994). Visual analysis is an intuitive, fast, easy, and efficient technique, and–
although we have not tried the methods with teachers yet–we suppose it is intuitive to use for teachers, 
compared to other (fully-automated) methods which require a deeper understanding of the analysis 
algorithms and their parameterizations. In addition, visual analytics enables the analyst to explore 
the data without a hypothesis in mind, but rather with the goal of coming up with a hypothesis, i.e., 
exploratory data analysis. Future work should investigate these issues further by performing data 
analysis studies with teachers as analysts.

Figure 12. 3rd Study, “Legends of Zurich”: The trajectories of different groups of learners are visualized in a space-time cube. 
The visualization application allowed orientation by displaying the base map on the ground, at the top, and on an adjustable 
height depending on the slider’s position. Remarkable is that the light-blue/dark-blue/purple/yellow and the orange/magenta team 
quit the LBML unit early by using public transportation—visible as lines that break away in the upper half to the left (software: 
© CommonGIS; basemap: © OpenStreetMap)
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The visual analytics approach has some limitations that must be taken into consideration. On 
the one hand, conclusions based on visual analysis require interpretative experience. Moreover, such 
conclusions are not in every case evident. Furthermore, some aspects of the data are analyzed faster 
and more reliably with fully-automated approaches than with visual analytics, such as movement trends 
or travel modes. In this regard, visual analytics will often be the first step which helps in identifying 
hypotheses and determining which data mining approaches should be used in the second stage.

Another limitation of visual analytics is that, most obviously, visualization per se is accessible 
only to sighted learners. Furthermore, the human vision processing has limited capacities. For instance, 
it is not possible for humans to distinguish between 256 different shades of grey, even though the 
gradient could be rendered (Dambrosio, Amy, & Colombo, 1995). As one alternative approach, an 
interface for explorative data analysis could address also other senses, such as the auditory sense. 
Sonification has the potential to make even continuous and fine resolved data accessible to everybody 
once visualization reaches its limits, or to complement visual perception by utilizing the advantages 
of multimodality (Schito, 2012).

environmental Perception and Learning Progress
For teachers, it is difficult to ensure that students demonstrate a learning progress since neither a 
reliable implementation of this intention can be guaranteed (Borich, 2013) nor classroom assessments 
provide clear information about the effective learning progress (Dubs, 2009). On the one hand, 
teachers have an idea which path is most suitable to perceive the impressions used to solve the 
learning module. However, learners cannot guarantee first, that they keep walking on the path, second, 
that they perceive the same as the teacher expected, and third, that they really use this particular 
impression or proposition to build their own knowledge structure. It is arguable whether staying on 
or leaving the suggested path and thus, freely explore the environment is more or less beneficial for 
the learning progress. Furthermore, it can be boring to fulfill vastly interactive location-based tasks 
alone. In this way, free exploration is highly constructivist and might increase motivation and thus, 
learning progress more than, for instance, executing single learning units along an instructed path.

Based on constructivism, individual learning is impeded inter alia if the time on task is not 
exploited optimally (Borich, 2013; Dubs, 2009; Schneider & Stern, 2010). In extreme cases, the time 
on task is reduced to a minimum if learning units are aborted earlier than expected. Thus, motivation 
is a key factor to convince learners to take advantage of investing time for learning. However, it was 
not possible to differentiate between motivated and unmotivated learners or to distinguish a trendsetter 
by visually analyzing the tracks. Furthermore, the reason why first the light-blue/dark-blue/purple/
yellow team all together and shortly thereafter the orange/magenta team shown in Figure 12 took the 
same public transportation line to go home cannot be explained by visual analysis. If the abort of the 
learning unit was in fact deliberate, mobile communication might have been a factor that induced the 
yellow team to abort as well. Thus, mobile communication might impede unrelatedness, however, 
because mobile communication was not tracked in this context, this hypothesis could be verified.

Consequently, more empirical data and ground truths are needed, perhaps by repeating the outdoor 
learning units with other participants to verify the indications mentioned, such as post interviews, 
questionnaires, silent observers (Sailer, Kiefer, Schito, et al., 2015). Furthermore, the explanatory 
model has to be improved and computational methods as promoted by Laube et al. (2005) must be 
considered to be taken into account.

Spatio-Temporal Factors of Movement Tracks
The path chosen by learners is highly individual and based on behavior as well as on different 
decisions made. We propose that the individual paths provide evidence on the learner’s uncertainty, 
time pressure, or (lacking) motivation. The factors distance, duration and speed have been discussed 
using examples. Further spatio-temporal properties of trajectories are acceleration, deceleration, or 
curvature. Due to a small sample and the diversity of the positional accuracies of the data caused 
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by different devices, the comparison of different trajectories regarding acceleration and deceleration 
could not be investigated, but is planned for future work. Assuming that a learner with a distinct 
target and local knowledge follows the easiest path, curvature might indicate uncertainty in finding 
the target. Furthermore, straight paths might be an indicator for leaders or motivated learners. Curvy 
paths alone, however, are not evident to prove uncertainty or a lack of motivation. However, curvature 
could be combined with deceleration, with the relative position to other learners, or with the time 
the learner stood still for the purpose of re-orientation or map usage in order to provide evidence 
about uncertainty or motivation. Third, we assume that learners under time pressure move faster, 
behave differently, and make more mistakes than regular learners. As Ames (1992) distinguishes 
between mastery goal achievers and performance goal achievers, time pressure might biasedly foster 
performance goal achievers who are familiar to deal with pressure. Certainly, our assertions are 
associated with uncertainty and thus, further research is needed to provide evidence.

Technical Limitations of Positioning data
Some of our study participants were confronted with technical problems. First, positioning problems 
occurred, most of them directly after the positioning sensor has been turned on. Some tracks were 
recorded based on a pseudo-location while the device was searching for satellites. These incorrect 
points are often recognizable as points on a straight line across the landscape, as for instance in Figure 
6, where dotted lines provide evidence for this phenomenon. In general, the accuracy of positioning 
sensors in older mobile devices is low and thus, uncertainty is high. Therefore, it could be argued that 
location data collected with mobile devices do not permit conclusions about the learners’ behavior. 
However, teachers using smartphones in their classes must deal with the prevailing technology and thus 
with the measurement tolerance. Furthermore, to make a statement whether the tasks have been solved 
or not, the ongoing study has shown that the prevailing measurement tolerance is mostly sufficient.

Comparing Visualizations for Visual Analysis
In this paper, we have always referred in the explanation and interpretation of the figures to direct 
comparisons, advantages, and disadvantages of analyzing 2D or 3D visualizations. In general, we 
recommend that teachers analyze recorded paths with interactive and versatile methods. Interactivity 
supports the individual confrontation of the teacher with the data. Tracks can be shown, hidden, 
colored, isolated, combined, or animated to emphasize a specific phenomenon. Furthermore, versatile 
and multimodal methods allow the use of different visual representations and thus address the brain’s 
analyzing capacity not unilaterally (Goldstein, 2014). Moreover, findings are more profound if the 
tracks are analyzed over time. Thus, time must be visualized somehow: either as slider-controlled 
animation on 2D maps or as space-time cube in 3D. In this regard, WebGL with the JavaScript 
libraries d34 and threejs5 currently offers a suitable, easy, and fast option for the implementation of 
both approaches. An implementation in the web-based OMLETH platform (Sailer, Kiefer, & Raubal, 
2015) is planned for future research. However, the storage and access of human movement tracks 
have to take into consideration privacy issues, even if these tracks are anonymized. Information 
about personal location is highly dynamic, easily interpretable, and in case of OMLETH available 
in real-time. Therefore, the cautious and secure usage of these datasets is very important to prevent 
possible abuse (Duckham & Kulik, 2006; Sailer, Kiefer, Schito, et al., 2015).

Representation of Movement Tracks: Point cloud vs. Line Segments
As mentioned in advance and shown in Figure 7, tracks were at regular time intervals. The simplest 
way to visualize these discrete records are points—basically visualized or temporally animated. Such 
point clouds indicate an area of specific interest without displaying wandering learners noisily. In 
fact, however, tracks of goal-directed learners are continuous, thus, it seems obvious to connect two 
chronologically consecutive records with an interpolated line segment and visualize them as trajectories 
to clarify the chronological sequence (G. Andrienko et al., 2013). Interpolated line segments, however, 
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are always only an approximation of the real trajectory. The inaccuracy of trajectories can be large if 
the temporal recording frequency is low. Furthermore, the visualization of interpolated line segments 
visually covers space which may increase cognitive load. We argue that the visual analysis is too 
complex and could distract the reader from the map analysis if overlying lines cover underlying lines 
with a strong informative content. Instead, blending unnecessary lines out, or, making unimportant 
lines more transparent, brighter, or thinner reduces graphical overload. Because both approaches 
have advantages and disadvantages, an evaluator must decide which shall be used for which purpose.

2D vs. 3D Environment Limitations for Visual Analytics
Because many teachers have experience in interpreting common 2D maps and because online map 
services prevalently start in a 2D view, we also recommend to teachers to start visual analysis in 2D. 
First actions usually include comparing the map-based context of the direct neighborhood where 2D 
might be faster than 3D. Design errors, ideal path deviations or other phenomena can be determined 
efficiently in 2D.

The 3D space-time cube appears to be more suitable for identifying the behavior of moving 
objects over the whole time duration compared to 2D animated representation. Although the 
perspective view of the space-time cube can be interactively changed, (G. Andrienko et al., 2013) 
argued that this technique is not very convenient for location trajectory segments in space and time 
because interaction such as zooming, panning, and rotating through the 3D interface has to be learned. 
Furthermore, information retrieval (e.g., time, duration, spots, content) might be challenging due to 
spatial distortion and complex perception even if an additional time scale is visualized. Therefore, it 
is recommendable to add further informative elements to the map, e.g., graphs, speed graph, travelled 
distance, or suggested clusters techniques (G. Andrienko et al., 2013). In general, 3D analysis is more 
complex than 2D analysis and requires more experience in applying spatial analysis techniques used 
in the field of GIS.

In conclusion, to investigate whether 2D or 3D representations are preferred, further exploratory 
studies with teachers in a real environment need to be conducted. We expect that the spatial cognition 
and spatial abilities of teachers are crucial in designing LBML modules (Sailer, Schito, et al., 2015). 
We argue that the visual analytics of movement tracks after an executed learning module needs at 
least the same amount of spatial cognition skills as the design part of the learning units.

Advantages of Visual Analysis for Teaching
At least as important as the class planning is the post-hoc reflection of general or specific things that 
could be done better next time. The aim should be to offer learners a learning-supportive environment 
(Borich, 2013) and to implement findings from the field of learning research to exploit learning 
capacities optimally. In this regard, a reflective learning unit follow-up fosters improvement in teaching. 
Thus, the visual analysis of the learning unit can be seen as an analytical part of the follow-up with 
the goal of investigating things that went well or not well and to find solutions, how they could be 
improved in the future. If the time on task at one specific site was low, solutions should be found 
how it could be increased to address cognitive learning better than in past classes. In accordance 
with Schito, Sailer, and Kiefer (2015), the resulting learning unit including the tasks is based partly 
on experience. We believe that especially the findings of the follow-up raise teacher’s experience 
to plan future classes smoothly and thus, encourage teachers to attach importance to embed visual 
analysis for the follow-up.
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