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Abstract

Ad-hoc shared-ride trip planning in an urban environment is a complex task within a non-deterministic transportation network.
Mobile geosensor networks provide the technical environment for realizing ad-hoc shared-ride trip planning: Network nodes are
autonomous agents that interact locally by ad-hoc short-range communication and arrange for shared rides. In a mobile geosensor
network, communication costs are critical because of constraints regarding bandwidth, available energy, and memory. This paper
introduces spatio-temporal concepts from time geography, which can be employed during the planning process to significantly reduce
communication costs. We will integrate network-based algorithms and different wayfinding strategies to assist both shared-ride
clients and hosts in finding optimal travel assignments. Multi-agent geosimulation in a real street network is used to demonstrate the
applicability of the approach and quantitatively confirm the theoretically foreseen reduction in communication costs.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
Keywords: Trip planning; Mobile geosensor networks; Time geography; Network algorithms; Agent-based simulation
1. Introduction

Shared-ride systems match a specified travel demand
of clients (e.g., pedestrians) and transportation supply
by hosts (e.g., private cars, taxis, or public transportation
vehicles) such that clients find rides offered by hosts to
their destinations. Current shared-ride systems exist in a
large variety of forms, be it by social conventions in
informal groups (Resnick, 2004), or provided by
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centralized services (Colorni and Righini, 2001; Wash
et al., 2005; EuropeAlive, 2006). In general, centralized
services require service pre-notification by hosts as well
as pre-booking by clients, and thus, are more popular for
nationwide than for local traveling. Today's centralized
services cannot cope with instantaneous transportation
supply and demand on a large scale, since this concerns
monitoring and managing a complex, non-deterministic
transportation network in real time.

Advances in technology allow envisioning of an ad-
hoc, peer-to-peer shared-ride system. This decentralized
system will be based on a mobile geosensor network
(Winter and Nittel, 2006). In this mobile geosensor
network each node is represented by a software agent on
etry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All
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a mobile device, either attached to a client or to a host. In
the remainder we will no longer refer to the human roles,
and hence, can call the agents shortly client and host.
Clients and hosts have positioning sensors on board, are
moving, and can communicate with each other via radio
within a limited range. Clients can negotiate directly
with nearby hosts for rides. If only nearby hosts are
needed, then this system architecture is fully scalable.

However, an ad-hoc shared-ride system poses some
challenges in optimizing its communication and trip
planning strategies. An optimal trip, for example, the
quickest trip, can take any route and can involve rides
with multiple stops, where clients can change hosts.
Consequently, an agent planning a trip seems to require
knowledge of the complete current transportation
network before coming up with an optimal trip. Since
this agent must collect such knowledge ad-hoc from
other agents, it becomes clear that one critical question
is how the communication effort to collect this
knowledge can be reduced. The motivation for any
reduction is manifold (Zhao and Guibas, 2004):

• Communication costs in terms of energy consump-
tion are a major concern in any mobile sensor
network. Nodes are battery-powered and radio
communication is the most energy-consuming activ-
ity of a node. In our scenario, energy is a concern at
least for clients.

• Bandwidth in the communication channel is another
concern. Mobile sensor networks communicate in
relatively short communication windows (to save
power), and this limits the number of messages to be
exchanged.

• The memory of mobile devices is another limited
resource in this type of application. In this work we
assume that all agents have a copy of the street
network available in memory and also routing
algorithms for their own purposes. But the transpor-
tation network in shared-ride trip planning is
dynamic, with the number of edges equalling the
number of hosts times the lengths of their travel
plans. For an inner-urban traffic situation, this
number can easily exhaust the storing and analyzing
capacity of any planning agent.

In this paper we are interested in the optimal trip for a
client at the time of planning. The hypothesis is that the
transportation network knowledge required to find the
optimal trip, and therefore the necessary communication
in the geosensor network, can be restricted significantly.
This directly implies a significant reduction in signaling
and computational overhead, as well as power con-
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sumption of the mobile devices (Küpper, 2005). Our
focus is therefore on enriching the reasoning capabilities
of the agents in the geosensor network, and we are not
concerned so far with communication routing strategies
or protocols.

Specifically, a heuristic based on spatio-temporal
criteria is developed, which enables the planning clients
to identify potentially relevant transportation hosts
before any communication occurs, and also enables
contacted hosts to decide whether their routes may
contribute to an optimal trip before responding. The
theoretical framework that underlies this filtering
approach is time geography. It was introduced by
Hägerstrand (1970) and focuses on the question of how
people's locations in space at given times affect their
abilities to be at other locations at other times.

This paper extends previous work (Winter and
Raubal, 2006) that developed the theoretical model of
this paper. Here we present additionally an implemen-
tation of the heuristics in a multi-agent simulation and
on a realistic street network. This requires the transfer of
time-geographic elements to dynamic transportation
networks. The simulation allows testing the hypothesis
on a large scale including two different wayfinding
strategies – a reference strategy and a multi-stop
strategy – and results of this simulation are shown and
discussed.

The next section (Section 2) presents an overview of
previous and related work, before we collect principles
from time geography that enable us to limit the
exchange of messages to relevant ones (Section 3).
These theoretical ideas are tested in a multi-agent
simulation, which is specified in Section 4. The results
are presented and discussed in Section 5. The paper
closes with conclusions and directions for future work
(Section 6).

2. Previous work

In this section we introduce the ideas behind shared-
ride trip planning, discuss the relevant theory on
network algorithms, and present an overview of
simulating geospatial phenomena.

2.1. Shared-ride trip planning

Ad-hoc shared-ride trip planning has recently been
proposed as a promising application for mobile
geosensor networks (Winter and Nittel, 2006). Mobile
geosensor networks (Stefanidis and Nittel, 2005) are
wireless peer-to-peer networks, which provide an
effective, efficient, and elegant design alternative to
red-ride trip planning in mobile geosensor networks. ISPRS Journal
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the non-scalable centralized shared-ride services. This
approach is effective because it can provide near-optimal
trips (note that the globally optimal trip can be
determined in a non-deterministic system only with
hindsight). It is efficient because it does so for low
communication costs. And it is elegant because it
requires low computational effort. Details depend on the
chosen combination of communication and wayfinding
strategies.

Ad-hoc shared-ride trip planning is a problem defined
on a complex, non-deterministic transportation network:
hosts come and go, and do not follow schedules, and ad-
hoc formulated demand of a client is also non-
deterministic. Therefore the approach to study the
properties of trip planning in amobile geosensor network
was by simulation. This simulation is specified in
(Winter et al., 2005) and results are presented in (Winter
and Nittel, 2006). The reality of urban traffic was thereby
simplified to a grid world, in which hosts travel at
constant velocities and clients look for rides along a
predefined route in the center of the simulated world. A
suitable protocol allowed bi-directional communication
between agents that negotiate over shared rides. A
negotiation process consisted of three steps:

1. A client broadcasts a request message with the route
the client wants to travel.

2. Hosts with travel plans overlapping this requested
route broadcast an offer message for this particular
overlap.

3. Clients, after collecting all offers and selecting the
best, broadcast booking messages to the selected
hosts.

In this simulation it was investigated how different
communication strategies – different depths of commu-
nication into the transportation network – affect the
average trip lengths. Since the communication links in this
network of moving agents are fragile, all three negotiation
steps must happen within one communication window,
which in practice radically limits the communication
depth, and thus also the knowledge of the planning client
agent. Hence, it was a significant result that network
knowledge froma local set of hosts allows for finding trips
nearly as quickly as from the full set of current hosts. The
result is plausible if we consider the waiting times for
hosts that are currently not near to the client. While this
simulation was suited to investigate the effect of different
communication strategies, it did not provide a way to
compute optimal solutions for the shared-ride trip
problem. Communication depth thresholds were chosen
arbitrarily, not based on relevance criteria, and the chosen
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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wayfinding strategy-following a predefined route-does
not necessarily deliver the optimal (e.g., quickest) trip.

The optimal trip can take any route. Hence, a client
should request not a route, but any contribution to a
travel between start and destination. But with this poorly
specified request, it seems difficult for the hosts to
determine whether their own travel plans are potentially
relevant for the client. This problem will be addressed in
the current work by utilizing elements of time
geography during the planning process and applying
them to a street network.

2.2. Network algorithms

A client's shared-ride trip planning corresponds to
searching for an optimal trip. The client can always
determine an optimal trip within a collected set of travel
offers. But what if the client has not collected any
attractive offers? Hence, we define an optimal trip as
being the optimal trip computed from all hosts present at
the time of trip planning. The interesting question is then
for a client to collect all the offers from the current set of
hosts that can contribute to this optimal trip. A trip can
be optimal with respect to any single-or multi-criteria
cost function. Without loss of generality, we assume in
the remainder of this paper that travel time is the
criterion to be minimized.

At this moment it is helpful to distinguish the sorts
and characteristics of networks in the shared-ride
system. Their characteristics and representation are
decisive for the design of efficient algorithms. We
distinguish three different networks:

• The street network: This network is a directed and
weighted network that can be considered static
during the time of a trip. We can assume that all
agents, clients and hosts, know the street network and
its static properties.

• The communication network: This network is created
by connectivity, which exists between all pairs of
agents that are within radio range to each other. Note
that a mobile sensor network can consist of
disconnected components.

• The transportation network: This network is the
dynamic (space-time) network of host trajectories
and waiting times at transfer points. Since multiple
hosts can go along the same street segment at
different times, the travel time weight of the street
segment becomes time-dependent, with waiting
times at the street intersections. This structure is
well known for time-dependent transportation net-
works (Pallottino and Scutella, 1998), and relevant
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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for schedule-based trip planning. Depending on the
ability and willingness of clients to walk, additional
space–time-segments can be created in the form of
walking trajectories along any street segment and
without waiting delay.

Classic shortest path algorithms, such as Dijkstra's
(1959), or A⁎ (Hart et al., 1968), expect full network
knowledge. This is also the case for their time-dependent
versions (Cooke and Halsey, 1966; Orda and Rom, 1990;
Ziliaskopoulos and Mahmassani, 1993; Chabini and Lan,
2002; Chon et al., 2003). But in the decentralized planning
process the clients have only local network knowledge:
they learn about the trajectories of nearby hosts. This
knowledge is both spatially (not contacting all hosts in the
client's communication network component) and tempo-
rally limited (not accessing any information from future
hosts-information which might not exist at all). This sort
of planning problem requires an adaptive algorithm.
Winter and Nittel (2006) propose to let the client regularly
revise its travel plans: by reaching different hosts with
each negotiation, they catch some of the unpredictability.
However, Winter and Nittel were not primarily interested
in the algorithm, so their clients can simplify the planning
problem by requesting a specific route. Broadening their
approach to an adaptive A⁎ strategy allows clients finding
quicker routes if that requires detours. This algorithm was
first proposed byKoenig, Likhachev et al. (2004) and then
adapted by Wu, Huang et al. (2005).

All these algorithms cannot find the overall optimal
route — the one that considers future opportunities as
well. Furthermore, as long as clients request rides only
from nearby hosts, in most trip planning cases the
transportation network constructed from current offers
will not contain any trip to the destination. Hence, an
adaptive A⁎ algorithm will necessarily mix information
from two different networks. It will use the transporta-
tion network for determining the shortest path tree of
rides from the current position, and it will then evaluate
each node in this tree with a heuristics on the remaining
part to the destination, which can be based on the street
network. Since weights in the transportation network
change over time, any decision may be outdated after a
short time. This means that the iterative application of
this algorithm does not guarantee a global optimum,
only the best decision at each time.

An inverse problem to the given one has been
approached by Wolfson and Xu (2004). They investi-
gate the dissemination of reports about available
resources in mobile (geo-)sensor networks. Translated
to the shared-ride system scenario, hosts would be able
to disseminate free seat capacity. However, the types of
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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resources considered by Wolfson and Xu, such as a
parking spot or an accident, are not mobile.

2.3. Geosimulation

Simulation of agent behavior in space is a power-
ful research method to advance our understanding of
the interaction between agents and their environment.
It allows for both the examination and testing of mod-
els and their underlying theory as well as the observa-
tion of the system's behavior (Gimblett et al., 1996).
Geosimulation is a term for simulation modeling of
spatial phenomena using concepts from computer and
geographic information science. It is used to represent
complex, adaptive, and dynamic systems based on a
generative (bottom-up) approach (Benenson and Tor-
rens, 2004). Geosimulation is suitable for representing
self-organizing and emergent systems, such as urban
environments or transportation systems. While having
much in common with traditional simulation approaches
(microsimulation, cellular automata, agent-based simu-
lation), geosimulation explicitly captures the character-
istics of individual spatial units and spatial relationships.
Spatial analysis and remote sensing data can be used as
input for geosimulation environments.

The most common types of geosimulation are cellular
automata, geographic automata systems, and agent-
based systems. Cellular automata (CA) are based on a
regular grid of cells where each cell has an internal state
(Wolfram, 1984). For spatial simulations two dimen-
sions with finite boundaries are often chosen for reasons
of simplicity. During simulation each cell's state is
updated in discrete time intervals, depending on the state
of its neighboring cells. Cellular automata are used to
simulate systems, in which the behavior of elements can
be described by rules, for example, to study the spatial
growth of populations. Recently, geographic automata
have been introduced by Benenson and Torrens (2004).
This approach focuses on capturing a typology of
entities, space and spatial relationships, and representing
the change of spatial properties over time. In particular, a
set of georeferencing rules defines the geographic
location of automata within the system. Contrary to
cellular automata, neighborhood relationships can vary
in space and over time. The concept of neighborhood in
geographic automata systems covers concepts known
from traditional GIS, such as connectivity or proximity.

Multi-agent systems (MAS) depict systems as a
combination of multiple autonomous and independent
agents. Agents extend the representation of automata by
adding behavior that governs the internal state change
(Maes, 1995). They are situated in some environment and
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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capable of autonomous action (Wooldridge, 1999).
Categories such as intelligent, distributed, and mobile
agents exist. Formally, the term multi-agent system refers
to a system consisting of an environment including
objects, agents, and locations (Ferber, 1999). Objects and
agents are linked by relations. Various operations
represent the agent's actions, for example, an agent can
perceive and manipulate an object. Finally, there are
operators to represent the application of the operations and
the reactions of the world to this attempt of modification.

Agents have been mainly dealt with in artificial
intelligence but have recently also gained popularity in
other fields such as geography (Frank, 2000). MAS are
of interest to geosimulation due to their ability to reflect
human behavior (Frank et al., 2001). For example,
wayfinders (Raubal, 2001), car drivers, or shoppers in a
mall (Ali and Moulin, 2005) can be modeled as agents
with internal states and transition rules that drive their
actions. Using this concept self-organizing and complex
urban systems can be studied well with MAS. Examples
include the study of pedestrian's walking paths, cars in
urban traffic, and city development.

In previous work on time geography for ad-hoc
shared-ride trip planning, cellular automata were used
for a proof of concept (Winter and Raubal, 2006).
However, in this work, a multi-agent system is the
preferred approach for implementing the simulation
environment. Cellular automata are too static for the
modeling of moving nodes and network structures. The
MAS approach is well suited for modeling the dynamics
of shared-ride trip planning scenarios: Clients and hosts
can be modeled as agents with their own identity and
behavior.

3. Optimizing shared-ride planning through time
geography

This section introduces time geography and describes
those elements, which are utilized to minimize the
number of hosts relevant for a declared demand of a
client. This method is then applied to networks.

3.1. Time geography

People and resources are available only at a limited
number of locations and for a limited amount of time.
The ability to be present at a particular location in time is
therefore an essential human requirement. Time geog-
raphy defines the space–time mechanics by considering
different constraints for such presence— the capability,
coupling, and authority constraints (Hägerstrand, 1970).
The possibility of being present at a specific location
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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and time is determined by people's ability to trade time
for space, supported by transportation and communica-
tion services.

Space–time paths depict the movement of indivi-
duals in space over time. Such paths are available at
various spatial (e.g., house, city, country) and temporal
granularities (e.g., decade, year, day) and can be
represented through different dimensions. Fig. 1 shows
a person's space–time path during a day, representing
her movements and activity participation at three
different locations. The tubes depict space–time sta-
tions-locations that provide resources for engaging in
particular activities, such as sleeping, eating, and
working. The slope of the path represents the travel
velocity. If the path is vertical then the person is engaged
in a stationary activity.

Time geography defines different constraints that
limit a person's activities in space and time. Fundamen-
tal physical restrictions on abilities and resources are
summarized as capability constraints. Not having
access to a car in order to trade time for space efficiently
is one example for this type of constraint. Coupling
constraints refer to the requirement for a person to be at
a specific location at a certain time or for a fixed time
duration. For example, if two persons want to meet at a
Cafe, then they have to be there at the same time. Certain
domains in life are controlled by authority constraints:
A person can only shop at a mall, when the mall is open,
such as between 9 am and 8 pm.

All space–time paths must lie within space–time
prisms (STP). These are geometrical constructs of two
intersecting cones (Lenntorp, 1976). Their boundaries
limit the possible locations a path can take based on
people's abilities to trade time for space. Fig. 2 depicts a
space–time prism for a scenario where origin and
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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Fig. 2. Space–time prism as intersecting cones — based on (Miller,
1991).

Fig. 4. Example of a client's space–time prism.
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destination have the same location. The time budget is
defined by Δt= t2− t1 in which a person can move away
from the origin, limited only by the maximum travel
velocity. In a street network, movement is limited by the
network geometry and the maximum travel velocity,
which can vary for different edges and times. This will
be further discussed in Section 3.3. The interior of the
prism defines a potential path space (PPS), which
represents all locations in space and time that can be
reached by the individual during Δt. The projection of
the PPS onto geographical space results in the potential
path area (Miller, 1991).

Time geography has been applied in the area of GIS
regarding transportation networks to model and measure
space–time accessibility (Miller, 1999; Miller and Wu,
2000; Wu and Miller, 2001). It has also been advocated
to integrate time geography with both GIS and
Location-Based Services to achieve more user-centered
systems (Raubal et al., 2004; Miller, 2005b). Further
applications in the geo-domain concern the structuring
of dynamic wayfinding environments (Hendricks et al.,
2003) and the modeling of geospatial lifelines (Har-
iharan and Hornsby, 2000). Analytical formulations of
basic entities and relationships from time geography can
be found in (Miller, 2005a).

3.2. Defining basic cones and prisms

In Winter and Raubal (2006) filtering techniques
based on space–time prisms were formally specified and
utilized to reduce communication in a geosensor network
during shared-ride trip planning. The developed heuris-
tic is based on spatio-temporal criteria and enables the
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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planning clients to identify potentially relevant trans-
portation hosts before any communication. It also
enables contacted hosts to decide whether their routes
may contribute to an optimal trip before responding.

Using an arbitrary (i.e., walking time) latest arrival
time t1, a cone centered at the destination going backward
in time to the start time t0 can be constructed. This forms
one half of a space–time prism. The slope of the cone is
defined by the maximum velocity of vehicles. Since
transportation is assumed to be faster than walking, the
client's start point is somewhere inside the conic volume.
The base circle of this so-called dl-cone (destination,
latest) contains all hosts that can potentially contribute to
the client's request at time t0, because they can reach the
destination within the given time interval Δt= t1− t0
(Fig. 3). All hosts outside cannot contribute to the client's
travel plan, thus applying this element already reduces the
communication effort through elimination of messages
from hosts outside the dl-cone.

In a second step not only locations of hosts are
considered, but also their future travel plans. By
constructing the so-called se-cone (start, earliest)
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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originating in the start of the client at time t0 and going
upward until t1, the travel possibilities of the client from
the start are considered. Intersecting the dl-cone and the
se-cone results in a space–time prism that defines the
possible movements of the client between t0 and t1 (Fig.
4). This can be used to further limit the number of hosts
to be considered, because only hosts with trajectories
intersecting the space–time prism are relevant. In order
to compute the space–time prism, the hosts need to
know only the street network, but nothing about other
agents in the network. Therefore no communication
among hosts is needed.

Regarding the gain in efficiency of communication it
was theoretically shown that the space–time prism of
clients imposes a clear criterion for hosts to determine
whether their travel plans are potentially relevant for a
client. As demonstrated byWinter and Raubal (2006) up
to 97% of all hosts that are irrelevant for the planning
process can be filtered out. This theoretical estimate was
also supported by an example using cellular automata.

As stated by Winter and Raubal (2006) the utilization
of time-geographic elements was accomplished with the
assumption of continuous space and constant travel
velocities in all directions and at all times. This results in
perfect cones and space–time prisms with simple
geometries. In realistic urban settings a large portion
of space is not available for participation in activities or
travel (Miller, 1991). Cones still exist, but they have
irregular shapes due to the travel time geometry. They
can be determined, though, by average travel time costs
along street edges. In the following, the network
equivalents of time-geographic elements are defined.
Fig. 5. Space–time path in a network.
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3.3. Time geography for networks

Space–time paths of individuals in networks are
limited to movement along edges and nodes. Projecting
a space–time path onto geographic space therefore maps
to edges in the network. Space–time stations coincide
with locations along edges or node locations. Fig. 5 shows
an example of a network space–time path including three
nodes and two edges. Note that the geometry of the
transportation network represents a space–time constraint
for individuals using the network.

The impact of the network structure on the geometry of
the STP can be large. Since movement within a trans-
portation network is limited by its geometry and the travel
velocity may vary for each edge (and also in time), the
geometry of the STP in a network is not a cone, but forms
an irregular shape. Miller (1991) developed methods and
procedures for implementing network-based space–time
prisms. The network time prism (NTP) consists of edges
and nodes in transportation networks. The potential path
tree (PPT) is a subgraph of the network, which consists of
edges and nodes reachable by an individual, given fixed
activity locations and a time budget (Wu and Miller,
2001). For networks this represents a more realistic
geometry of accessibility for individuals. Miller (1991)
also presented an algorithm for computation of the PPT,
which works based on the following inputs: locations of
origin and destination; locations and characteristics of
relevant activities; travel environment. The generic
procedure consists of two steps:

1. Calculation of shortest paths from the travel origin up to
a cumulative impedance (travel time) along each path.

2. Testing, for each edge, whether traveling from the
origin over the edge and to the destination is possible
within the cumulative impedance.

This approach covers all properties of a network,
including edge directions and turn costs. Relaxing the
constraints on these properties, we introduce a simpler
approach in Section 4.3 for calculating the PPT. Miller
(1991) further discussed implementation issues for query
and visualization applications. Research was also done
on incorporating cognitive constraints into the network-
based space time prisms (Kwan and Hong, 1998).

4. Agent-based simulation of shared-ride trip planning

In the following, the method of reducing computa-
tional and communication overhead by using elements
from time geography is applied to an urban environment
by simulating the behavior of clients and hosts in a street
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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network. Two trip assignment strategies are tested and
the necessary algorithms specified.

4.1. Environment

As a simulation environment, the software P2PSim
was developed, which simulates shared-ride trip planning
scenarios with one client requesting a ride and multiple
hosts moving in a street network, possibly offering
transportation supply.1 P2PSim allows for the simulation
of both the communication and the computations of client
and hosts, and their real-time visualization. The applica-
tion supports import of GIS data and the representation of
these data as a consistent network structure. Various
parameters, such as number of hosts, the trip assignment
strategies, and communication range are adjustable, and
the recording and analysis of measurement variables over
1 The software including the code can be downloaded from http://
srtp.dvrdns.org.
2 http://www.geotools.org.
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time is possible. The software is based on open-source
frameworks, i.e., RepastJ – Java port of the Recursive
Porous Agent Simulation Toolkit (North et al., 2006) – is
used for multi-agent modeling and the GeoTools2

framework for basic GIS data handling.
As a database a street network of the city of Münster

(Germany) is used. The data is available in an ESRI®
shapefile containing polylines, which were manually
digitized from aerial photographs. The network contains
127264 nodes and 160803 edges. Fig. 6 shows a
screenshot of the simulation environment. As a
communication strategy we use flooding (Nittel et al.,
2004): If a geosensor receives a message it rebroadcasts
it to every other node within its communication range.
The receiving nodes repeat this process.

4.2. Trip assignment strategies

For the simulation runs, the client is placed at a
location in the city center with a destination on the inner
street circle. This choice represents a realistic medium-
length inner-urban trip offering various alternatives to
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005

http://srtp.dvrdns.org
http://srtp.dvrdns.org
http://www.geotools.org
http://dx.doi.org/10.1016/j.isprsjprs.2007.03.005


3 a(l,i,t) stands for the travel time of all available host routes. For
our calculations, all travel distances in the space–time network are
matched to travel times. The network itself is different for every pair
(l,i) depending on the time t.
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reach the destination. Different numbers of hosts are
created with randomly chosen start and destination
locations. The trips are created such that host routes fall
into one of three possible categories (random assign-
ment with adjustable probabilities for each category):

• Random route: the complete route is chosen
randomly.

• Random start and destination: start and destination
location are chosen randomly, but the route includes
the current location of the client.

• Random start location: starting from a random
location, the host route includes the current client
location and its final destination.

These choices are made in order to give the client a
chance to be picked up by a host, as well as keeping the
simulation realistic. The time budget is limited to
walking time to the destination, therefore in the worst
case of not having any rides from hosts, the client
reaches its destination by foot. In order to verify our
hypothesis that communication between clients and
hosts can be reduced significantly by using spatio-
temporal criteria during the planning process, two trip
assignment strategies are defined and implemented, and
then compared with each other. First, we use a simplistic
reference strategy without time geography and then a
multi-stop strategy that includes time-geographic ele-
ments as defined in Section 3.

4.2.1. Reference strategy
For the reference strategy, hosts do not implement any

specific algorithm to decide whether their trips are
relevant for a client. This strategy serves as a brute-force
approach in order to demonstrate the full scope of possible
optimization based on the application of spatio-temporal
criteria. If a host receives a request from the client (i.e.,
start and destination locations) an offer is returned
instantly, consisting of the host's route ahead-specified
as a sequence of nodes. Messages are rebroadcasted
without any restrictions. The client collects all travel plans
and decides for the quickest trip to the destination. Once a
matching offer – hosts reaching the client's destination –
is received the trip is booked. This strategy is implemented
for comparing the results to the multi-stop strategy
described in Section 4.2.2. For this strategy the following
probabilities for creating host routes are used: 20%
random route, 60% random start and destination location,
and 20% random start location, but at least one from the
last category. It is expected that the reference strategy
leads to a high number of offers being created, as well as a
fast increase in the number of exchanged messages
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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between the client and hosts, and between hosts, because
no filtering techniques are applied.

4.2.2. Multi-stop strategy
For this strategy, the NTP of the client's travel

possibilities is used by hosts to decide whether to make
an offer or not. We expect a significant reduction of the
number of offers created by hosts, therefore also
significantly reducing communication in the network,
because all hosts with routes outside the NTP will not
make an offer. With the multi-stop strategy hosts also
make offers for partial routes, therefore it is not required
that the client's destination is part of an offered route.
The client chooses the one that gets it closest to the
destination. Shared-ride trip planning using the multi-
stop strategy involves the following steps:

1. The client calculates the shortest path from its current
location to the destination (for walking).

2. The client sends a request and thereby communicates
start and destination as two network nodes.

3. Hosts receiving such request calculate the client's
NTP. They create an offer (i.e., a sequence of nodes
including arrival times) if their route includes the
client's current position and a part of their future
route intersects the NTP.

4. The client collects all offers and iterates over these
host routes to identify the most promising node. The
ranking of nodes is done by calculating for each
reachable location i the travel time a(l,i,t)3 to reach i
from the client's current location l and the expected
minimal travel time b(i,d) from i to the destination d
using the Euclidean distance as a heuristic. The final
score r for each node being part of an offer is
calculated by r(l,i,d,t)=a(l,i,t)+b(i,d). If any offer
contains the destination it is preferred over other
offers due to client preferences.

5. After identifying the most promising node from all
received offers, the client compares this value to the
r-value of the next walkable node along its
precalculated shortest path and decides whether to
book the offer or walk.

6. The client sends a booking message to the cor-
responding host, containing the determined node i as
the drop-off location. Once this location is reached the
whole process is repeated until the client has reached
its destination.
red-ride trip planning in mobile geosensor networks. ISPRS Journal
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Table 1
Host decision algorithm

Algorithm 1: Host decision algorithm (for multi-stop strategy)

input: client request, request cache, host route
output: host offer
function DECIDE_REQUEST(request, cache, route)

if cache contains request then STOP (1)
offer=empty stack; (2)
foundStart=false;
ntp=CALCULATE_NTP(request)
while route not empty do (3)

node=pop from route;
if node==client start location then foundStart=true;
if foundStart==true then
if ntp contains node then push node in offer;
else break;

if offer==empty stack then STOP (4)
return offer

Fig. 7. Construction of NTP.
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For simulation runs using the multi-stop strategy the
probabilities of host creation are slightly adjusted. Since
the client uses multiple stops on its trip to the
destination, a new set of random hosts is generated
after the client has completed a partial trip. After n runs
the probability of a host route to reach the destination is
increased with each run. This way the client can reach
the destination after a few runs. We expect that the
overall trip length using the multi-stop strategy increases
because the client most likely does not take the shortest
path, but rather takes detours.

4.3. Algorithms and data structures

Different algorithms are needed for the implementa-
tion of the shared-ride trip planning simulation. First, the
calculation of the network time prism is described, and
then we present the specifications for the host decision
algorithm and the client choice algorithm.

4.3.1. Calculation of NTP
As described in Section 3.3 the NTP forms the

equivalent to the space–time prism for networks. The
NTP must be calculated for the multi-stop strategy.
Using the same parameters as for the dl-cone, a dl-
subtree can be constructed by running a shortest-path
algorithm originating at the destination location that
stores the cumulative travel times along the shortest path
in each node. The algorithm discards subtrees from
nodes where the cumulative travel time exceeds the
upper time limit, i.e., the latest arrival time. This
Please cite this article as: Raubal, M. et al. Time geography for ad-hoc sha
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solution assumes that traveling along an edge is possible
in both directions at the same cost and turn costs are not
considered. The reason is that the client travels to the
destination in the opposite direction.

For calculating the NTP, the se-subtree must also be
constructed. This is done by running a shortest-path
algorithm originating at the current client location and
iterating up to the travel time limit. TheNTP of the client's
travel possibilities is then calculated by intersecting both
subtrees. It consists of all nodes that are part of both the dl-
and the se-subtree. Fig. 7 summarizes the construction
process: (1) a dl-subtree originating at the destination
location starts to grow, (2) a growing se-subtree is added,
and (3) the two subtrees overlap creating the network time
prism. An intersection results only if the upper time limit
is sufficient. Calculating the NTP consists of running an
impedance-aware shortest-path algorithm twice. For a
graph with n nodes and m edges Dijkstra's algorithm
using a Fibonacci heap implementation has a logarithmic
average time complexity ofO(n⁎ logn+m). The NTP can
be stored using a heap-based structure, because it is used
for individual node lookup only, therefore the topology of
the network does not need to be preserved. Regarding the
space complexity two factors must be considered: (1) the
nodes and edges of the transportation network are stored
external to the algorithm with an upper bound ofO(m+n)
and (2) Dijkstra's algorithm behaves similar to other
graph search algorithms in terms ofmemory consumption
with an upper bound of O(bm), where b refers to the
branching factor at a given node and m to the maximum
search along a given path. With regard to mobile devices
(1) is much more relevant, since a typical street network
can become very large.
red-ride trip planning in mobile geosensor networks. ISPRS Journal
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Table 2
Client choice algorithm

Algorithm 2: Client choice algorithm (for multi-stop strategy)

input: host offer, complete offer queue (cOfferQueue), partial offer
queue (pOfferQueue)

output:
function RECEIVE_OFFER(newOffer,cOfferQueue,pOfferQueue)
if newOffer includes destination then

bestOffer=dequeue from cOfferQueue;
if newOffer is quicker than o then (1)
enqueue newOffer in cOfferQueue at top;

STOP;
bestOffer=dequeue from pQueue;

dropOff=null;
best_r=bestOffer.r;
for all nodes∈newOffer do (2)

a=a+TIME(n−1,n);
b=TIME(n,destination);
r=a+b;
if (rbbest_r) then (3)
dropOff=n;
best_r=r;

if dropOff is not null then enqueue newOffer in pQueue; (4)
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4.3.2. Host decision algorithm
Hosts have to store their own travel route. This can be

done with an abstract data type stack that has entries for
each node to be visited. At the beginning of the trip the
host calculates its route by applying a shortest-path
algorithm. Successive nodes can be obtained from the
stack within constant time complexity of O(1). After
receiving a client's request hosts have to decide whether
to make an offer or not. Algorithm 1 (Table 1) shows the
specification for the multi-stop strategy. The input
parameters are the client request (request) consisting
of start and destination nodes, a cache of previous
requests (cache), and the host's travel route stack
(route). First, duplicate requests are eliminated to avoid
resending offers (1). Assuming a hash-based implemen-
tation of the request cache, lookup can be done within
constant time complexity of O(1). In (2) the offer is
initialized as an empty stack together with a Boolean
helper variable. The ntp variable is initialized with a
calculation of the network time prism based on the
request parameters. Then iteration starts by looking at
one node of the future route at a time (3). If the client's
start location is found, the helper variable is set to True.
Once the start location has been found the currently
visited node is added to the offer stack if it is part of ntp.
An empty stack indicates that the host's travel plan does
not include the client's start location, thus no offer is
created (4).

The time complexity of the host decision algorithm
can be found by considering the following parts:

1. Calculation of the NTP has logarithmic average time
complexity of O(n⁎ logn+m),

2. cache lookup and stack operations have constant time
complexity of O(1), and

3. search in the NTP has logarithmic average time
complexity of O(logn) when using a heap-based
implementation.

The cost of iterating over the route has linear time
complexity of O(r). With growing network size,
however, the input size r (number of nodes in the host
route) gets much smaller on average than the input size
n and m (nodes and edges in the graph) and can
therefore be neglected. The host decision algorithm has
therefore total linearithmic average time complexity of
O(n⁎ logn+m) and a space complexity of O(r).

4.3.3. Client choice algorithm
The client must be able to receive, store, and evaluate

offers received from hosts. Storage is necessary to
identify duplicate offers and to select, at any point in
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time, the best of all current offers. An offer contains a
route (list of nodes) and arrival times for each node. This
way the client can easily identify the optimal trip. The
multi-stop strategy requires the client to choose from the
received offers the one that contains a node with the best
r-value. To evaluate closeness of such node to the
destination, the Euclidean distance is used as a heuristic.
Algorithm 2 (Table 2) shows the pseudo code notation
for this strategy.

For the list of known offers two priority queues are
used: one for offers containing the destination (cOffer-
Queue) and one for offers containing only partial routes
(pOfferQueue). The client chooses the best offer from the
complete offer queue (see also Section 4.2.2); if this queue
is empty the best from the partial offer queue is chosen.
The best host offer can then be retrieved with constant
time complexity of O(1). At first, newly received
complete offers are handled and compared to the currently
known best offer from cOfferQueue (1). Time complexity
for the update operation depends on the implementation
of the priority queue — using a balanced tree the insert,
update, and remove operations have a worst-case time
complexity of O(log n) (Knuth, 1998). If the received
offer contains only a partial route, the drop-off location
from the currently known best partial offer is extracted.
The algorithm then iterates over all nodes from the
received partial offer's route (2) and calculates the score r
for the current node, which is then compared to the best
known drop-off location (3). If a better locationwas found
pQueue is updated accordingly (4). Two new operations
must be considered for evaluating time complexity: the
red-ride trip planning in mobile geosensor networks. ISPRS Journal
7.03.005
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Table 3
Average number of exchanged messages per simulation run

Strategy C2H (Avg.) H2H (Avg.) H2H Unique (Avg.)

Reference 14575 757768 692
Multi-stop 31201 497319 412

Fig. 8. Average number of exchanged messages per simulation run.
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iteration over all nodes from the offer and the travel time
calculation. The latter has a time complexity of O(1), the
former of O(n). Total average time complexity of
Algorithm 2 is therefore linear, i.e., O(n). Because the
input size n of the client choice algorithm refers to the
number of nodes in the offer, which is on average much
smaller than the total number of nodes in the network, the
average time complexity of the client's calculations is less
relevant than the host decision algorithm. This responds to
increasing network size, whereas the former responds to
increasing trip length of the offer. The same is true for the
space complexity of the algorithmwith an upper bound of
O(n), because in the worst case, every new offer is
enqueued in one of the two queues.

5. Simulation results and discussion

This section presents the results of the simulation
runs for the two trip assignment strategies specified in
the previous section. The outcomes are then discussed.

5.1. Results of the simulation

The software P2PSim was used to perform 200
simulation runs with the street network data of the city
of Münster (see Section 4.1). The parameters were set in
the following way: (1) communication range: 500 m,
(2) travel assignment strategies: reference and multi-
stop strategy with 100 runs each, and (3) number of
hosts: 10, 20, 30, 40, and 50 with 20 runs each. In order
to evaluate communication and computation effort, six
variables were recorded:

1. Client-to-host (C2H) messages: count of offers and
requests that were exchanged directly between the
client and hosts.

2. Host-to-host (H2H) messages: count of all messages
exchanged between hosts, including messages that
have been rebroadcasted.

3. Unique H2H messages: count of all unique messages
received by hosts, i.e., which had not been previously
received by the host.

4. Offers: count of all offers created by hosts.
5. Computation time: total time (in milliseconds) spent

by hosts running the host decision algorithm.
6. Time: time (in seconds) for each run.
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The simulation data was recorded in runs, consisting
of constant time intervals (ticks) of one second. Details
on configuring a simulation run with regard to clients,
hosts, and routes are given in Section 4.2.

5.1.1. Number of exchanged messages
The number of exchangedmessages between the client

and hosts was recorded and aggregated. Table 3 shows the
average number count per simulation run of client-to-host
(C2H), host-to-host (H2H), and unique host-to-host (H2H
Unique) messages for all runs. The majority of messages
fall into the category H2H. Less than 0.1% of these
messages were unique host-to-host messages. Only a
small portion of the exchanged messages falls into the
C2H category. Using the reference strategy resulted in the
exchange of a significantly higher number of messages
compared to using the multi-stop strategy, which leads to
a reduction of 31.58%.

5.1.2. Number of created offers
The total number of offers created by the hosts was

recorded for each run. Using the reference strategy, 21
offers were created, compared to 16 offers generated
when using the multi-stop strategy. This means that on
average 23.81% fewer offers were created.

5.1.3. Effect of increasing network density
For the simulation runs different numbers of hosts

were used to investigate the effect of increased network
density on communication and computation for both
strategies. Fig. 8 shows the average number of exchanged
messages per simulation run with an increasing number
of hosts (10 to 50). For the message count we used the
sum of unique host-to-host (H2H Unique) and client-to-
host (C2H) messages per simulation run. The values
red-ride trip planning in mobile geosensor networks. ISPRS Journal
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Fig. 9. Messages transmitted over time per simulation run.

Table 4
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document a higher rate of increase in communication for
the reference strategy after more than 30 hosts populate
the network. The number of exchanged messages
increases almost linearly using the multi-stop strategy.

5.1.4. Increase of communication over time
During the simulation, the variables were also

recorded for each tick to provide a time series of com-
munication and computation effort. Fig. 9 illustrates the
timeline of the increase in average number of messages
per simulation run exchanged for both strategies. The
reference strategy has a higher increase in communica-
tion, with quadratic growth between 0 and 45 ticks,
settling after about 60 ticks to a logarithmic increase.
With a roughly logarithmic increase the multi-stop
strategy documents a smaller rate of increase in the
average number of exchanged messages.

5.1.5. Comparison of computation time
Computation time was also measured for the host

decision algorithms performed after receiving a request.
Table 4 demonstrates the average computation times4

per simulation run using both strategies. These values
give only a rough estimate, because different systems,
particularly mobile devices, may lead to large difference
in these values. Most valuable for comparing the
computational effort are the considerations on time
complexity described in Section 4. Compared to the
reference strategy the multi-stop strategy has a compu-
tation time that is more than 100 times higher.
4 Measured on a system with the following specifications: Pentium
M 725 1.8 GHz, 1 Gb RAM, Debian Sarge Linux (kernel 2.6.12-10-
686), JRE: build 1.5.0 06-b05, mixed mode, sharing.
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5.2. Discussion

When evaluating the outcome of the simulation runs,
the results show a significant reduction in overall
communication for the multi-stop strategy, which uses
the network time prism as a filter criterion. This is
extremely important for host-to-host communication,
with a significant reduction of communication com-
pared to the unfiltered approach. The larger number of
client-to-host messages results from the longer trip
lengths, but does not affect the overall reduction in a
major way. The results reveal a large gap between the
number of raw host-to-host messages and the unique
host-to-host messages received. This demonstrates
convincingly that the number of rebroadcasted messages
has a great influence on the overall message exchange
and that reducing this number of messages represents an
efficient way to cut down overall communication.

For the number of created offers the results demon-
strate a similar reduction. The reduction of offers using the
multi-stop strategy lies within the expected amount: 80%
of the generated hosts most likely did not have a valuable
route for the client, yet using the reference strategy they
still made an offer. With an average host count of 30 the
results show that by using the reference strategy 70% of
the hosts made an offer, whereas this number is only 52%
when applying the multi-stop strategy. In Section 4.2.2 it
was argued that the average trip duration will be longer
using this strategy. This is proven by the results, which
indicate that the duration of multi-stop trips is roughly
twice as long compared to the reference strategy. The
recorded data indicate that using the multi-stop strategy
more than half of the hosts generated in the “random start
and destination” category had a trip valuable for the client,
because therewas a node in their future travel route,which
brings the client closer to its destination.

Analyzing the communication with increasing net-
work density and over time demonstrates that by applying
the filtering techniques overall message generation and
rebroadcast decrease significantly while still finding
optimal trips for the client. The reference strategy shows
a much steeper increase in overall communication com-
pared to the multi-stop strategy as the number of hosts in
Average computation times per simulation run

Strategy Average number of
hosts

Average computation times
(ms)

Reference 30 64
Multi-

stop
30 7982

red-ride trip planning in mobile geosensor networks. ISPRS Journal
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the network increases. The measured computation times
reflect the increase of calculating the network time prism
while using the multi-stop strategy.

6. Conclusions and future work

In this paper we introduced time-geographic con-
cepts for networks and utilized them for ad-hoc shared-
ride trip planning in mobile geosensor networks. The
hypothesis was that this leads to a significant reduction
of communication and computational overhead. The
large-scale simulation of the model in a real street
network based on the developed P2PSim software
confirmed the theoretically derived results. In realistic
street networks space-time prisms become network time
prisms, which have irregular shapes due to the travel
time geometry. They can be determined, though, by
average travel time costs along street edges. The results
show convincingly that the network time prism of
clients imposes a clear criterion for reducing the
communication effort in an ad-hoc shared-ride system.
The theoretical considerations in Section 3 list the
possibility to reduce the dissemination of a client's
request to the client's space–time prism, and to enable
hosts to determine the relevance of their travel plans for
a specific request. The simulation in Section 4 realizes
the filtering process of the hosts, and demonstrates its
efficiency. Including more of the elements of the
theoretical model into the simulation can only improve
this trend.

For reasons of simplicity, the presented simulation
has also introduced some deviations of the hosts from a
random mobility model. These deliberate constraints
directed more hosts along the client's position, and this
shortened the average trip times, i.e., run times. The
introduction of probability parameters kept the approach
valid because chances of host routes to fall into one of
the three designated classes stayed the same as with a
random mobility model. Average trip times are not the
focus of this investigation, and depend on many factors,
among them the mobility model of hosts (Winter and
Nittel, 2006). But this design has an effect on the results:
It leads to higher host densities along the route of the
client than elsewhere. This means we observe more
communication traffic than necessary, because we have
more hosts within the space–time prism of the client. In
other words, the results on efficiency should only
increase within a truly random mobility model.

It was argued earlier that computational costs for
determining the space–time prism by hosts are compa-
rably low (Winter and Raubal, 2006). This assumption
was made for a grid street network and relatively short
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client trips. This paper demonstrates that the computa-
tional costs for realistic trip lengths in real street
networks are effectively manageable, and low compared
to the effort of unfiltered communication. The compar-
ison with unfiltered communication is relevant not only
with respect to the saved local message handling effort,
but also – and in particular – with respect to the energy
costs of broadcasting, which are by far higher than for
computations.

The resulting model is theoretically founded, but has
a heuristic component by choosing a suitable latest
arrival time. In this paper we have assumed that clients
are able to walk, and will walk for one time interval if no
better offers were made. The walking route would be
along the shortest path from the current position to the
destination, and the walking speed is slower than any
shared ride. After one time interval clients will revise
their travel plans. With these constraints, the latest
arrival time is in fact determined by walking speed: if a
client does not get any shared rides, she has to walk the
whole distance.

The work presented here suggests many questions
and directions for future research:

1. An open question is the choice of an adequate
mobility model for hosts. Hosts in urban traffic are
not moving randomly in the network, and hence,
violate a basic assumption of the random walker
model (Camp et al., 2002). Capturing the dynamic
aspects of transportation networks, such as time
dependent travel times, temporal peaks and conges-
tion, is an ongoing research effort, leading to
increasingly realistic space–time accessibility mea-
sures. Furthermore, if the clients have knowledge of
the regular traffic patterns of hosts, they could adapt
their wayfinding strategies and choose transfer points
at more frequented street intersections.

2. Another question concerns the effect of competition.
If clients compete for seats, hosts will introduce their
own interests, and not always make an offer.

3. In the presented simulation, clients only evaluate
offers at the end of a booked trip. Extending the
model so that clients evaluate other nodes also during
trips may lead to more efficient shared rides because
additional good opportunities would not be missed.

4. Due to the dynamics of the system, both a(l,i,t)
and b(i,d) do not necessarily have the same im-
pact on the potential of an intermediate node i.
Modeling different influences can be done through
a weighted linear combination of the relevant
factors (α⁎a+β⁎b). The larger the ratio α/β the
more r(l,i,d,t) is sensitive to the time it takes to
red-ride trip planning in mobile geosensor networks. ISPRS Journal
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reach i, while the smaller the ratio the more sen-
sitive the relevance function is to b(i,d) (Gaisbauer
and Winter, 2006).

5. The calculation of b(i,d) may be refined based on
the travel time that a client could expect for a ride
along the shortest path at maximum speed. Such
estimation is optimistic, can never overestimate,
and leads to more accurate results than the used
Euclidean distance.
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