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a b s t r a c t

Wind resource assessment is fundamental when selecting a site for wind energy projects. Wind is
influenced by several environmental factors and understanding its spatial variability is key in deter-
mining the economic viability of a site. Numerical wind flow models, which solve physical equations that
govern air flows, are the industry standard for wind resource assessment. These methods have been
proven over the years to be able to estimate the wind resource with a relatively high accuracy. However,
measuring stations, which provide the starting data for every wind estimation, are often located at some
distance from each other, in some cases tens of kilometres or more. This adds an unavoidable amount of
uncertainty to the estimations, which can be difficult and time consuming to calculate with numerical
wind flow models. For this reason, even though there are ways of computing the overall error of the
estimations, methods based on physics fail to provide planners with detailed spatial representations of
the uncertainty pattern. In this paper we introduce a statistical method for estimating the wind resource,
based on statistical learning. In particular, we present an approach based on ensembles of regression
trees, to estimate the wind speed and direction distributions continuously over the United Kingdom
(UK), and provide planners with a detailed account of the spatial pattern of the wind map uncertainty.
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1. Introduction

Wind energy plays a key role in reducing the level of CO2

emissions required to mitigate the worst effects of climate change.
By 2020 the UK has pledged to produce 30% of its electricity from
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renewable sources [1], compared to 17.8% today [2]. With the
depletion of conventional sources and the increase of global
warming Renewable Energy Sources (RES) have attracted the
interest of investors. Among all RES, wind energy has had a sub-
stantial growth over the last five years, reaching a global installed
capacity of around 370 GW (gigawatts) at the end of 2014 with an
overall turnover of 277 billion Euros [3]. Moreover, according to
the latest statistics [4], electricity produced from onshore wind
farms is becoming cheaper than other traditional sources of elec-
tricity such as nuclear, coal, and combined gas cycle. In the United
States the unsubsidized levelized cost of 1 MWh (megawatthour)
produced by onshore wind is already lower or equal to all other
sources of electricity.

When selecting a site for investing in a wind energy project,
wind resource assessment plays a fundamental role. Meteor-
ological stations collect climate data, but they are sparsely located
and therefore do not provide the full data coverage necessary for
the optimal placement of wind farms. In order to obtain an esti-
mate of the wind characteristics in unknown locations, a way to
model the wind field is required. In the last decades, multiple
models have been developed for this scope and the research in the
field has focused on two main directions: numerical wind flow
models (i.e. methods based on physics, also referred to as physical
methods) and statistical methods. Physical methods model the
wind field by solving physical equation, such as the equations that
govern the mass and momentum-conservation laws, or
computational-fluids dynamic models. Statistical methods on the
contrary, estimate the wind resource by correlating past observa-
tions with environmental data, such as elevation, slope, and
temperature. Both methods have been widely used in literature, at
various scales and with different level of accuracy. Below we
present an extensive overview of the literature to provide the
reader with a classification of wind resource assessment methods.

1.1. Numerical wind flow models

These methods estimate the wind resource by solving some of
the equations that govern the motion of air in the atmosphere.
Numerical wind flow models can be divided by level of sophisti-
cation or complexity [5] and partly also according to the scale at
which they operate. In wind resource assessment we generally
refer to three main scales of operation: macro-scale (known as
synoptic scale with a resolution in the order of 2000 km or larger),
meso-scale (few kilometres to thousands kilometres) and micro-
scale (hundreds of meters to few kilometres). Synoptic scale
models study large-scale phenomena, such as large depression
fronts, which are mostly driven by Coriolis force and pressure
gradient. These methods will not be treated in this review.

The first level of sophistication is occupied by mass-consistent
models, such as NOABL (Numerical Objective Analysis Boundary
Layer), developed in the ‘70 s in the US [6,7]. These methods solve
only the equation of conservation of mass, which when applied to
the atmosphere states that if a wind mass is forced over a slope it
must accelerate so that the same volume of air passes in any given
region [5]. Mass-consistent methods are still widely used for
generating both meso-scale and micro-scale wind speed maps. Of
particular interest is the work carried out in the UK by the UK
Energy Technology Support Unit (ETSU) for the creation of a long-
term wind speed database [8]. They started from overlapping grids
of 100 km of resolution, with data collected from 56 stations for a
time period of 10 years, from 1975 to 1984. They then applied
NOABL to downscale the map at 1 km of resolution at three
heights: 10 m, 25 m and 45 m. To the best of our knowledge
nowhere in literature there is a mention of the computational time
needed to create the wind map mentioned above. However, since
these long-term databases are updated very infrequently, the time
needed to create them is somewhat not influential in the planning
process for newwind farms. For micro-scaling these data would be
used as look-up tables and their estimates would just be further
downscaled, thus minimizing computational time. Regarding its
accuracy, the technical report from Best et al. [9], created for the
MET Office (UK Meteorological Office), shows a plot of wind esti-
mations against weather observations from which the overall
deviation of the estimates seems to be around 2–5 m/s. Moreover,
another report from the MET Office [10] mentioned the bias of the
estimates (i.e. the mean of the residuals’ distribution) from this
method as equal to 1 m/s.

The second level of sophistication is occupied by models,
developed in the ‘80 s and ‘90 s, to include not only mass-con-
servation, but also momentum-conservation. These models are
based on the theory advanced by Jackson and Hunt [11] and work
by solving a linearized form of the Navier-Stokes equation gov-
erning fluid flows. Because of this characteristic these models are
often referred to as linear wind flow models. Probably the most
famous linear model is WaSP (Wind Atlas Analysis and Application
Program [12]), developed by Risoe National Laboratory of Den-
mark and used to create the EuropeanWind Atlas in 1989 [13]. The
Jackson-Hunt theory assumes that topography causes small per-
turbations in an otherwise constant wind flow, this allows the
equations to be solved efficiently [5]. WaSP incorporates techni-
ques to account for obstacles and roughness changes, even though
it is not equipped to handle complex terrains [5]. Despite its
known limitations, WaSP has been and remains very popular in
the industry and has been used to generate various wind speed
maps globally [14–17]. Regarding the scale of analysis, WaSP can
be used for both meso- and micro-scale modelling. In the late ‘90 s
for example, it was coupled with the Karlsruhe Atmospheric
Mesoscale Model (KAMM) [18], to account for topography and
create the first example of meso-micro scale model of the wind
resource [19].

In alternative to linear models, the next level of sophistication
consists of methods able to solve the full spectrum of equations of
computational fluid dynamics (CFD) applied to air flows. These
models take into account mass and momentum conservation, plus
the effect of turbulence created by the interaction between wind
and complex terrains. Examples of these model are based on
Reynolds Average Navier Stokes (RANS) turbulence models [20,
21], and the Large-Eddy-Simulation (LES) model [22–25]. Addi-
tional information are provided in the comprehensive review of
these models applied to fine-scale computation of wind flows
carried out by Ayotte [26].

The final level of sophistication is occupied by Mesoscale
Numerical Weather Prediction (NWP) Models [5]. These methods
have been developed for weather forecasting; they include the full
sets CFD equations, but they also include schemes to take into
account: solar and infrared radiations, a soil model, clouds
microphysics and convection. Examples of such models are: the
Regional Atmospheric Modeling System (RAMS, http://rams.
atmos.colostate.edu/rams-description.html), Skiron (http://fore-
cast.uoa.gr/index.php), Weather Research and Forecasting (WRF,
http://www.wrf-model.org/index.php), MM5 (http://www2.
mmm.ucar.edu/mm5/overview.html), Consortium for Small scale
Modeling COSMO (http://cosmo-model.cscs.ch/). These methods
were developed to forecast weather patterns, based on the current
situation. They are applied at the local and global scale, starting
from direct weather observations from stations, radiosondes or
satellite data. Due to enormous amount of equations to solve
simultaneously these methods require substantial amount of
computational resources to be used successfully, and cannot be
used for micro-scale modelling with the current generation of
supercomputers. For this reason, numerical approximations is
often applied. NWP divide the atmosphere in 3D volumes
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(generally cubes) whose centres are used to define a three-
dimensional grid. At each point the NWP solves weather para-
meter equations. For global models a resolution of 40 km and 40
vertical layers is often applied [27,28]. For micro-scale modelling,
on the contrary, these methods are generally coupled with other,
faster to execute, algorithms. Examples include AWS Truepower’s
MesoMap and SiteWind systems [29], 3TIER’s

FullView system (http://www.vaisala.com/), the Risø National
Laboratory’s KAMM–WAsP system [19], and Environment Canada’s
AnemoScope system [30]. Al-Yahyai et al. [31] present a review of
the use of NWP data for wind energy resource assessment, with
particular attention on the accuracy of the methods. The wind data
derived from NWP models are biased and in most of the studies
considered, they underestimate about 5% the wind speed, in par-
ticular close to the surface. Moreover, according to their review,
NWP models still present limitations due to: the simplifications in
physics, the uncertainties in the initial state, in the lateral
boundary conditions and in the surface characteristics. The study
concluded that the overall wind speed bias ranged between
0.25 m/s and 2.5 m/s as function of the terrain’s complexity.

These models have been used to simulate the wind field in a
specific location in Spain and their performance compared in
order to generate a benchmarking of wind flow models [32]. The
conclusion of the study is that the downscaling at fine resolution
of the global meteorological and topographical datasets is possible
but the computational cost remains very high for engineering
applications. The challenge is to find the trade-off between the
physical downscaling at a specific resolution sufficient to capture
the most relevant aspects of the local wind. The author suggests
the linearization of the model to a finer grid to take into account
the local spatial elements of the topography (such as hills gen-
erating the speedup effect). For this purpose, the study points out
that CFD model can help in taking into account spatial elements
such as hills or tree canopies for a more complete wind resource
assessment including the wind direction’s rose, wind speed and
atmospheric stability. The impact of stability and forest canopies
on complex terrain flows was demonstrated with the Alaiz test
case used to benchmark the models described in the study. An
important final outcome of the study is that “advance models
require systematic model evaluation processes in order to assess
their impact on the chain of uncertainties of the wind resource
assessment process. There is a lack of high fidelity experiments
due to the difficulties of meeting the required spatial and temporal
coverage of the relevant physical scales of the modelling system at
a reasonable cost” [32].

1.1.1. Evaluation of uncertainty in numerical wind flow models
The methods mentioned above have been proven over the

years to be able to estimate the wind resource with a relatively
high accuracy. However, weather stations, which provide the input
data for wind resource assessment, are often sparsely located and
do not offer a complete data coverage. This adds an unavoidable
amount of uncertainty to the estimations, which physical methods
are not always able to describe in details, as pointed out by
Rodrigo et al. [32]. The error can be measured by comparing values
estimated from the model, with real values observed at weather
stations or in areas where we have a measuring mast specifically
positioned for this analysis. This is the methods used for example
in Gasset et al. [33] to test the methods used in the Canadian Wind
Energy Atlas, based on NWP models. They compared their esti-
mations with 10 measuring masts. They reported RMSEs (Root
Mean Square Error) of 0.74 and 0.82, depending on the resolution
of the land cover data they used (higher resolution equals better
results). They also did not provide a clear indication of the com-
putational time required for the two analyses.
Beaucage et al. [34] compared several types of physical meth-
ods on four different relatively small sites (maximum size
17�17 km2) at a resolution of 50 m. They started from a minimum
of four to a maximum of nine measuring towers. They achieved
the following averaged RMSE 0.74 for CFD, 0.62 for WAsP, and 0.44
for NWP. However, the authors report that to estimate wind speed
in these relatively small sites, they had to run the model for a
minimum of 2.5 h (for CFD) to a maximum of 864 h (for NWP).
Janjai et al. [35] used an atmospheric mesoscale model, mapping
wind speed in Thailand. They validated their model by comparing
their estimates with the weather observations, and computed
RMSE value between a minimum 0.61 to a maximum of 1.34 m/s.

A more accurate representation of the uncertainty is provided
by Weekes and Tomlin [36], who investigated the accuracy of a
weather forecasting model in UK. They presented a method to
calculate the uncertainty that arises from errors in the input
parameters, not due to the model assumptions and simplifications.
To achieve this, they employed a method based on quasi-random
sampling and simulation. They basically simulated numerous
outcomes of the model based on different combinations of input
parameters and they report a range of uncertainty of around 35%.
In another example [37], the same authors demonstrated that the
error distribution is highly dependent upon the local terrain fea-
tures of the estimation site. For example, for rural areas they can
obtain the best accuracy with a minimum error of 0.44 m/s, while
for more challenging environment, such as coastal areas, they
report errors around 1 m/s. Their process is also a step forward in
terms of computational time. They started their investigation
using wind estimates produced on a 1 Km resolution using the
NOABL models adapted to the UK by the MET Office (describe in
Section 1.1). From this they employed a downscaling technique
based on terrain complexity and land-use, which is fast and can
decrease the error in the NOABL data down to levels around
0.5 m/s.

Another method to assess the uncertainty of wind flow model
due to the speedup effect related to the topography has been
proposed by Clerc et al. [38]. The wind flow model used in the
study is a combination of the well-established orography model
MS3DJH/3R [39] and an empirical roughness and obstacle models
[40,41]. The model has been applied to two wind farms with dif-
ferent layouts. It couples the measurements of the masts and the
speedup effect to adjust the estimate of the AEP (Annual Energy
Production) of the WTs of the wind farms. The empirical functions
provide robust estimates of uncertainty and correlation of errors
both for sites with flat terrain and with forested and highly com-
plex terrain. Nevertheless, the model is relative to the region of the
wind farm and can be considered as an alternative to micro siting
rather than to a mesoscale model. The uncertainties of the latter
are the input reference wind speed, the regional and local aero-
dynamic parameters, the blending height and the Weibull shape
factor required to construct a distribution of wind speeds.

1.2. Statistical methods

Statistical methods have also been used for wind resource
assessment [42–49]. In this case the wind resource is generally
estimated based on the spatial correlation between measured data
and environmental predictors, e.g. topography and land-use. The
first attempt in this direction was the study by Lorenc [42], which
presented a three dimensional interpolation for multivariate geo-
potential height, thickness and wind speed. Three different opti-
mum interpolation techniques have been selected in the study to
pre-process the observations, to check the data and to produce the
grid-point values. The radiosonde and surface observations spread
worldwide have been collected in order to extrapolate the wind
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speed at different elevations using physical relationship. In this
study the authors report validation errors generally above 2 m/s.

In Luo et al. [43] seven spatial interpolation techniques such as
trend surface analysis (TSA), inverse distance weighting (IDW),
local polynomial (LP), thin plate spline (TPS), ordinary kriging,
universal kriging and ordinary co-kriging were applied to generate
daily mean wind speed surfaces of the UK. A set of wind speed
observations between 1998 and 2002 of 189 weather stations
collecting hourly values has been used. The predicted mean wind
speed surface for a specific day has been generated on a regular
grid of 5 km resolution across the England and Wales land surface
area. A leave-one-out cross-validation process was used in this
study to assess the uncertainty of the map. This validation loops
through the data and at each iteration excludes one weather
observation from the dataset used to train the algorithm. Then the
excluded observation is compared to what the algorithm estimates
for the same location, and the error is measured in terms of resi-
dual. By applying this process, the authors report a RSME of
1.47 m/s and a Mean Error (ME) of 0.01 m/s using the co-kriging
method, which was the best performer. The other methods show a
RMSE higher than 1.61 m/s and a ME comprised between –0.09 m/
s and 0.01 m/s.

The MET Office also used geostatistical interpolation (i.e.
“inverse-distance weighted interpolation of residuals from a
multiple regression model”) to produce a long-term wind data-
base (Met Office UK small and medium wind database) in the UK
[44]. Here they gathered data from 230 weather stations belonging
to the National Climate Information Centre (NCIC), for a time
period ranging from 1981 to 2010 (for the latest version of the
database dated 2013). Then they created a detailed wind speed
database at 1 km of horizontal resolution, for heights ranging from
10 m to 45 m above ground. According to a recent MET Office
report [10] the bias of this database is 0.4 m/s, calculated excluding
10% of the observations from the weather stations and re-
predicting them (i.e. a 10-fold cross validation). This makes this
database better than the one created with NOABL, which is why
the MET Office suggests using this one instead.

Another example of kriging interpolation applied to wind
resource assessment is provided by Cellura et al. [45]. In this work
they created a wind map of Sicily using two different interpolation
methods: inverse distance weighting (IDW) and universal Kriging.
The measurements at 10 m agl of hourly mean and maximum
wind speed and direction of 29 weather stations in Sicily over a
period of 3 years have been used as input data. Their validation
showed that the universal kriging method is not adequate for the
wind mapping as only 24% of the observations was well estimated.

These results were then used for comparison with a new
method they developed called network residual kriging (NNRK)
[46]. In this method a multi-layer perceptron is first used to esti-
mate the wind resource correlating it with environmental pre-
dictors. The second step is a kriging interpolation of the residuals
to further increase the accuracy of the predictions. The wind map
generated at 10 m agl (above ground level) was extrapolated to
50 m agl using the CORINE land cover map. The extrapolated map
has been compared to the Italian wind atlas generated with a
mass-consistent model. The comparison shows that, although the
spatial trend is similar, the NNRK underestimates the wind speed.

The wind field over the alpine region of Switzerland has been
generated using a multiple kernel learning regression model [47].
This model finds correlation patterns between the wind resource
and the environmental predictors, and then uses these patterns to
estimate the wind resource in regions were only spatial data of the
predictors are available.

The mean wind speed data at 10 m agl of 148 weather stations
over a 20 years period have been used. The wind speed has been
extrapolated to 50 m agl with a logarithmic profile using the
roughness values according to the land cover category. The model
shows test errors varying from 0.98 m /s to 1.27 m/s of the mean
wind speed. A similar approach has been also presented by Douak
et al. [48] used a statistical learning approach named Kernel ridge
regression to estimate wind speed starting from 100 training
samples, and obtained a minimum error of 1.4 m/s.

1.3. Comparison between numerical wind flow models and statistical
methods

With the reviewed research we can draw some general con-
clusions by comparing the two type of methodologies: namely
numerical wind flow models and statistical methods. Since we did
not find any benchmarking experiment that specifically compare
these two methods on the same dataset and with the same vali-
dation techniques, the only way we have to obtain information
about their general accuracy is comparing the validation results
presented in literature. However, we need to point out that vali-
dation results from different studies, performed in different areas
and starting from different data, are difficult to be compared
directly. This is because the type of data used, the topography of
the terrain and the land-cover of the study areas have a great
impact on the performances of every wind resource assessment
model. Moreover, most of the studies we reviewed are not con-
sistent in providing the measure of uncertainty of their work. In
some cases, the validation results are not presented, and if they are
presented there are studies in which the error is presented in
percentage. These discrepancies do not allow us to properly
compare our results with them and therefore we do not cite these
studies. Moreover, the validation results are generally presented
using the Root Mean Squared Error (RMSE), calculated as the
square root of the average squared residuals. This index is parti-
cularly problematic as suggested by Willmott and Matsuura [50]
and Fekete [51], who suggest that RMSE should be avoided.
However, for the purpose of this study we are only interested in
knowing average values of RMSE for different methods to see if
our results are comparable with literature studies. For this reason,
even though RMSE is not the best choice, it may still provide us
with a way to compare our results with previous studies.

From an accuracy perspective, we can say that numerical wind
flow models seem to provide better prediction for increasing level
of sophistication. From our review NWP reported average errors
around 0.5 m/s, while lower level of sophistication had accuracies
around 0.6–0.7 m/s. These results cannot be generalized, as sug-
gested by Brower [5], but in reviews that used several methods in
parallel these values seem to hold. Regarding statistical methods,
the studies we reviewed always report RMSE around or above 1 m/
s. Therefore, it appears that numerical wind flow models are in
fact more accurate in estimating the wind resource. One possible
drawback is that the level of sophistication is directly proportional
to the time and amount of resources needed to complete the
estimation process. For this reason, an accuracy level of around
0.5 m/s, for large areas, could translate in months of analysis car-
ried out on supercomputers. Beaucage et al. [34] for example in
their study report that to achieve a RMSE of 0.44 m/s, the NWP
model had to run for a total of 864 h (for an area of 17�17 Km, at
50 m of resolution). A way to solve this issue is to use long-term
databases and downscaling techniques. Weekes and Tomlin [37]
developed a method to downscale meso-scale estimates from a
mass-consistent model. The authors suggest this method is rela-
tively quick and efficient to run, because this method was based on
the statistical downscaling of long-term average wind speed data.
Even though a time figure is not provided, we can assume that it
would probably be similar to the time needed for statistical wind
resource assessment.



F. Veronesi et al. / Renewable and Sustainable Energy Reviews 56 (2016) 836–850840
Statistical methods are certainly more time and computation-
ally efficient, compared to numerical wind flow models, but from
literature we can conclude that they are generally less accurate.
Moreover, while numerical wind flow models can estimate the
wind resource calibrating the model with very few weather sta-
tions, Gasset et al. [33] for example used 10 masts; statistical and
geostatistical methods, since are based on correlating wind data
with environmental predictors, require large amount of data. For
example, ordinary kriging needs at least 100 observations to
compute the variogram with the method of moments [52].
Moreover, if the dataset does not cover all the types of terrain
present in the study area, chances are the statistical method would
not perform well. For example, a known limitation of random
forest is that it cannot estimate values of the variable outside the
range of the training data. For this reason, if we do not have
samples in a particular type of terrain, the estimates there would
have high uncertainties.

Another important different between numerical wind flow
models and statistical algorithms is the ability of the latter to
assess their own accuracy. A classic example is the ability of
ordinary kriging of providing an estimate of the variable of interest
plus a measure of the variance of the estimates. This variance is
calculated from the variogram according to the location of the
nearest data point and provide the user with a local measure of
the reliability of the map. This is something that numerical wind
flow models cannot provide directly. Weekes and Tomlin [36] in
their study talk about site-specific uncertainty since they provide
an assessment of the accuracy of their methodology for various
land-use type over the study region. For achieving this the authors
compared the estimates provided by their model with direct
observations of wind speed for each of these locations. They report
that for rural areas they can obtain the best accuracy with a
minimum error of 0.44 m/s, while for more challenging environ-
ments, such as coastal areas, they report errors around 1 m/s.
However, we think that these results are difficult to generalize for
the entire study area. In other words, we think it is difficult to
argue that the range of uncertainty obtained for rural areas
represents the full range of uncertainty for each area in the
country with the same land-use. That is probably one of the rea-
sons why a map of the spatial pattern of the uncertainty is never
presented in literature, to the best of our knowledge. This is where
statistical methods may have an advantage over numerical wind
flow models. These algorithms can assess their own accuracy
directly, without the need for any additional operation. For this
reason, we can present the user with a detailed map of the local
reliability of the estimates we are presenting. This is what we are
referring to when we talk about local uncertainty in this article.

The main purpose of this research is to demonstrate empirically
that with the advancements in remote sensing that provide us
with free access to numerous environmental raster data, we can
potentially increase the accuracy of statistical methods. Moreover,
there are now algorithms that can take advantage of all these
environmental data to create models that can potentially be very
accurate for wind resource assessments. These algorithms belong
to the class referred to as statistical learning, in which the algo-
rithm is trained based on correlation between the variable and
environmental raster data. This way we can achieve results com-
parable with physical methods in terms of accuracy, while redu-
cing the computational time to a minimum and having access to a
precise local uncertainty estimation. To demonstrate this we cre-
ated a framework to support planners during the feasibility study
in order to identify locations suitable for wind energy projects,
without the need of additional time-consuming wind measure-
ments campaigns. Additionally, we created a map that, alongside
the wind speed and direction distributions, shows the spatial
distribution of the uncertainties of the prediction. This would
provide planners with more detailed information to refine the
estimate of the future energy production of selected sites and to
rank them as a function of their economic risk related to their
uncertainties. In general, the delivered map would provide a tool
for a detailed spatial evaluation of the investment risk related to
the exploitable wind resource.
2. Materials and methods

2.1. Study area and dataset

This research was conducted in the United Kingdom over a
total area of 244,119 km2 at 1 km resolution. Wind data were
obtained from 188 stations across the United Kingdom. The data
are part of the MIDAS (Met Office Integrated Data Archive System)
Wind Data Archive and are freely available for research purposes
from their Website [53]. The locations of the 188 weather stations
are referred to as training locations and visualised as red points in
Fig. 1. This dataset is composed of long-term wind speed mea-
surements for a time period between 2009 and 2013, taken at
hourly intervals.

As Luo et al. [43] pointed out, MIDAS stations do not record the
same amount of data every day. The total number of stations we
downloaded from the MET office contained 580 weather stations;
of these, the large majority records only one value each day. Others
record few data during the course of the day and cannot be con-
sidered valuable for our research. If we consider only stations with
at least 20 h per day we obtain a total of 212 stations. However, in
many cases these recording are unusable since they contain
numerous NAs. So we needed to add an additional filtering step to
check the reliability of the data and remove stations where too
many NAs were clustered in particular time frames or seasons. We
did that by checking the time series data for any significant gaps
and remove the stations in which the sampling frequency was
unacceptable for prolonged periods of time. Of the 212 remaining
stations, only the 188 we finally used matched these criteria.

Several covariates, or predictors, were used to perform the
estimation. In particular, the Aster DEM (30 m resolution) pro-
vided by NASA [54] was used for elevation data and to create DEM
derivatives, such as slope, aspect, and roughness, computed in
SAGA GIS [55]. The land-use raster data (100 m resolution) were
provided by the CORINE project [56]. In addition, we used raster
maps at 5 km resolution from the MET office [57] with meteor-
ological data: mean annual temperature, maximum and minimum
temperature, mean wind speed, mean atmospheric pressure, air
frost, cloud cover, rainfall, and relative humidity.

2.2. Wind speed and direction

Wind speed is usually measured by meteorological stations and
towers, which belong to national meteorological services, and are
placed at airports or in proximity of wind farms. The wind speed
characteristics are usually (but not only) measured at 10 m above
ground level. In order to assess whether the wind speed at a given
location is economically viable, statistical analyses of wind data
are carried out to quantify its probability distribution. The prob-
ability distribution describes the likelihood that a given value will
occur, therefore the longer the data collection the more reliable
the probability distribution. For wind speed this distribution is
generally described by the Weibull distribution. This is not always
the case, and sometimes the Weibull is not a good approximation
of the wind speed distribution, even though in a majority of cases
this approximation holds. The Weibull distribution, which is a
special case of the generalised gamma distribution [58], is a two-
parameter continuous probability distribution [59] that is defined



Fig. 1. Location of the MIDAS weather stations. In red are indicated the locations of the weather stations we used for our study.
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Fig. 2. a) Weibull distributions as a function of C (constant k, source: [43]); b) Weibull distributions as a function of k (constant C, source: [43]); c) Example of Weibull
distribution (red line) interpolating the histograms (blue bars) describing the wind speed distribution with bins of 1 m/s. This function is generally used in the literature to
describe wind distributions [44,45,46], and it can be described by only relying on two parameters: shape and scale. Thus, if continuous spatial estimates of k and C are
available, the probability distribution of wind speed in any given location can be predicted.
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by the following density function:
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where x is the wind speed (in m/s), k is the shape parameter and C
is the scale parameter. In this equation the parameter x refers to
long term wind speed measurements. In fact, we need at least five
years of data to accurately fit a Weibull distribution.

Figs. 2a and 2b present the influence of C and k on the density
function, while Fig. 2c shows an example of a typical wind dis-
tribution with the fitted Weibull density function. These plots
were creating using computer generated data, just to show readers
how a Weibull distribution looks like and its sensitivity to changes
in the two parameters, shape and scale. Generally speaking, a
variation of the C parameter, keeping k constant, directly affects
the mean wind speed that increases proportionally with C. In
contrast, a variation of k, keeping C constant, produces a decre-
ment in the dispersion of the measurements around their mean.
These two parameters uniquely identify a Weibull distribution,
and therefore were used to estimate the wind speed spatially as a
function of the environmental predictors. Basically for each loca-
tion in our training set we fitted a Weibull to the wind distribution
and calculated the two parameters. These would become our
variables of interest for estimating the wind speed distribution in
locations where no observations are available.
For wind direction the approach followed with speed is not
possible. We tested the use of circular distributions to describe the
wind directions observed at weather stations. However, the
parameters of circular distributions were not as correlated with
the environmental predictors as the parameters of the Weibull
distribution. If this correlation is lacking, statistical methods will
provide poor mapping accuracy. For this reason, wind direction
was mapped using the frequencies of occurrence of selected
direction intervals. Basically, for each training location we esti-
mated the histogram of the wind direction, using 18 bins (meaning
intervals of 20°). For each bin we recorded the frequency of
occurrence and then we used the 18 frequencies as variables for
the mapping algorithm. This way we estimated in space each of
the 18 frequencies as a function of the environmental predictors.

2.3. Statistical learning approach

Statistical learning is a branch of statistics aimed at modelling
and understanding complex datasets [60]. Generally speaking,
statistical learning aims at estimating a target variable, based on a
set of inputs, or predictors. In mathematical terms this can be
expressed as follows:

Y ¼ f Xð Þþϵ ð2Þ
where Y denotes the target variable, X denotes the predictors (in
this case environmental data available in raster format), and ε is a
random error component, which depends on various factors such
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as measurements errors, and it is the irreducible part of the model
[60]. In this research Eq. 2 was solved for a total of 20 times, each
with different variables but with the same set of predictors. First
we solved it using as variables shape and scale, and then using the
18 frequency values of the histogram bins. The local wind speed
distribution is influenced by many environmental data, such as
topography [61] and land-use [62,63]. Since we assume a corre-
lation between the variable and the predictors, we can try to
estimate our target variables as a function of the environmental
predictors. The problem with working with many variables, as we
do in this work, is that they present different levels of correlation
with the environmental predictors. This may lead to a decrease in
the accuracy of the estimation, since there may be predictors that
if included in the model may lead to erroneous estimates. More-
over, having too many predictors cause the model to not be easy to
interpret, since it is difficult to identify the relative importance of
each covariate [60]. For this reason, the first step we took involved
the use of Lasso [64], a technique to filter the predictors and keep
only the most important to our analysis. This method is based on a
linear model. It was possible to use it because from a preliminary
correlation analysis we determined that many predictors were
linearly correlated with our variables. The Lasso works by fitting a
linear model to solve Eq. 2, with the difference that it does not use
the residual sum of squares (RSS) to calculate its coefficients.
Instead, it multiplies the standard residual sum of squares by a
penalty that shrinks the value of some coefficients toward zero,
thus excluding them from the estimation. This allowed us to work
only with the most correlated coefficients, hence speeding up the
computations and making the results more interpretable.

A crucial objective of this study was the estimation of the site-
specific uncertainty. For this reason, for estimating wind speed we
needed an algorithm capable of assessing its own accuracy. We
selected Random Forest (RF; [65]) as our mapping tool, which is
based on ensembles of regression trees. These types of algorithms
create regression trees by testing different predictors in order to
find the one split that minimises the RSS in the resulting subsets,
or tree leafs [66]. A regression tree can be viewed as a series of “if-
then” rules that are used to define classes of probabilities. The
prediction in locations where no wind data are available is per-
formed by running the predictors through the tree in order to
define the most probable value for that particular location.

Regression trees have the advantage of being very easy to
explain and interpret. The regression tree can be graphically dis-
played and this is a great advantage compare to other methods.
However, regression trees generally have a predictive power lower
than other approaches [60]. RF solves this by using bagging and
decorrelating the single trees. Random Forest instead of using the
entire dataset to build one single regression tree, uses the boot-
strap to build numerous trees, starting from the same training
dataset. Bootstrapping is a statistical resampling method, which
takes a dataset with n observations and resamples it randomly
with replacements, meaning that an observation can occur more
than once in bootstraping samples. This produces a series of
samples, of length n, to which the algorithm can fit a regression
tree. This way RF can fit numerous regression trees to the same
dataset; this procedure, technically referred to as bagging, reduces
the variance of the method and therefore increases its
accuracy [60].

Random Forest has another advantage compared to pure bag-
ging, it subsets the predictors at each split of the tree thus dec-
orrelating the ensemble. This is a strong advantage that leads to
higher accuracy, since it avoids problems with multicolinearity.
The reason is simple, suppose we have one predictor that is
strongly correlated with wind speed. If we allow the algorithm to
choose among all predictors, most or all the trees will use this
strong predictor. As a consequence all the trees will be highly
correlated and this does not lead to a substantial reduction of
variance [61]. Random forest overcomes these problems and
reaches a higher estimation accuracy.

Random Forest has been widely used in research for different
purposes, such as digital soil mapping [67,68], ecology [69], geo-
morphology [70], and remote sensing [71,72]. Its popularity is due
to the fact that it can generate reliable estimates and it is robust
against noise in the predictors [67], which is a crucial aspect when
dealing with environmental covariates. For these reasons, RF is the
perfect tool for wind speed mapping. In each predicted location,
RF produces a set of estimations, depending upon the size of the
forest. All the predicted values can be used to determine the var-
iance of the Weibull parameters, from which we can determine
the local uncertainty of the wind distribution.

We used the Mean Absolute Deviation (AD) to compute the
spread of each estimated variable around the arithmetical average.
AD is calculated according to the formula proposed by Hoaglin
et al. [73]:

AD¼ 1
n

Xn
i ¼ 1

xi�xjj ð3Þ

where n is the number of wind mean speed values computed from
each bootstrapping set, xi is the ith value of the wind mean speed
in a set of values from 1 to n, and ̅x is the sample arithmetical
average. This parameter is more robust compared to the standard
deviation, particularly for long-tailed distributions [73]. The mean
absolute deviation was also used to produce all the uncertainty
maps shown in this manuscript.

2.4. Uncertainty estimation

For wind speed mapping, as mentioned in Section 2.3, RF
produces a set of estimations of shape and scale for each predicted
location. The mean values of the distributions of shape and scale
can be used to create the Weibull distribution of the wind speed
for each unknown location. We could simply calculate the devia-
tion around the mean of the Weibull distribution to obtain a
measure of the average fluctuations of the wind resource. How-
ever, standard deviation per se does not provide us with a measure
of the local accuracy of the RF estimates. For shape and scale,
measuring the deviation around the mean of their distributions,
since they are directly estimated by RF, provides us with a measure
of uncertainty. The higher the variance of these distributions, the
higher is the local uncertainty. But if we just take the mean vales of
these two parameters to fit a Weibull, we are not estimating how
this uncertainty is propagated from the estimated parameters to
the wind speed distribution. For doing so we need to rely once
again on bootstrapping simulation. The bootstrap allows us to
randomly simulate hundreds of distributions of shape and scale,
with repetitions; for each new pair of distributions we can com-
pute their means and use them to fit a new Weibull, which would
be slightly different from the other. Each simulated Weibull would
have a mean wind speed and the amount of differences between
all the simulated wind mean speeds would be proportional to the
amount of uncertainty we have in that particular location for the
RF estimates. If we calculate the spread of all the wind mean speed
values calculated after each simulation we obtain the standard
error of the mean, which tells us how confident we are that the
wind mean speed we present on the map is the real mean of the
wind distribution. This is what is generally referred to as con-
fidence interval, and allows us to provide a measure of the site-
specific, or local, accuracy of the map. The smaller the error is the
higher is our confidence that the mean we calculated is the real
mean value of the dataset. With this method we are not only able
to compute the confidence interval of the mean wind speed, but
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we are able to compute it for the entire wind speed distribution.
This is a crucial information for planners, since it allows them to
calculate the potential range of variation of the energy output
based on the map uncertainty. This is a level of details we can
reach only by assessing the error propagation from the RF esti-
mates to the wind resource.

For wind direction there was no need to use an additional
simulation to determine its uncertainty, because we estimated the
frequency of each bin of the direction’s histogram (with bins of
20°). Since RF produces a measure of its own uncertainty by pro-
viding us with a set of estimates, we can use it to determine the
amount of error we have for each bin of the histogram. In this case
there is no propagation to compute because what we obtain from
RF is what we are presenting on the map, i.e. the wind rose of the
bins estimated from RF. For this reason, as a measure of the map
error, we present the average deviation of all the frequency bins
estimated by RF. The bigger this number is, the less reliable are the
RF estimates for wind direction in that particular location on
the map.

2.5. Validation

A crucial part of every modelling experiment is the estimation
of the overall error of the model. This process allows us to com-
pare our model with real values, i.e. weather observation, and
compute its accuracy. Statistical learning works by using the data
we collected from the weather stations to create a function to
solve Eq. 2. For wind speed for example, the algorithm correlates
the Weibull parameters with the environmental predictors in
order to define f(X) that estimates Y as closely as possible. This is
referred to as the training process of the algorithm. The crucial
aspect of every statistical learning exercise is trying to estimate the
accuracy of f(X) when used to estimate locations where we do not
have any information, i.e. locations that were not part of the
training set. This is referred to as assessing the test error. We can
compute the test error by using cross-validation, which is a pro-
cess in which we split the training set and then we use part of it to
estimate the remaining. To clarify, the training includes all the data
we extracted from the 188 weather stations, such as shape, scale
and the frequency of the direction histogram. In addition, the
training set includes all the values of the environmental predictors
extracted from the raster data in the location of the weather sta-
tions. In this study we performed a 5-folds cross-validation, in
which this training dataset is divided into five parts (or folds). Four
of these folds are used to train the statistical learning algorithm,
while the remaining fold (around 20% of the dataset) is used to test
its accuracy, i.e. calculate the test error. This same process is then
repeated until each fold is used for testing. Because the folds are
chosen at random, we decided to repeat the cross-validation
process 100 times, in order to have a more reliable estimation of
the test error. The comparison between observed and predicted
values was performed using RMSE, since it is widely used in other
papers to present the same result.

For the wind speed we trained the Lasso and RF on four folds,
then we predicted the shape and scale Weibull parameters in the
remaining fold. For each test location we then used the two
Weibull parameters to simulate a wind speed distribution and
then compared the estimated mean speed with the observed
values, calculating the RMSE. For the wind direction, the approach
is similar, for each location in the test set we estimated the his-
togram’s frequencies. Subsequently we use the estimated dis-
tribution to calculate the mean wind direction and we compared it
with the mean direction observed in the data, computing
the RMSE.
2.6. Software

This experiment was performed entirely using the program-
ming language R [74]. For fitting the Weibull distribution to the
weather observations we used the package fitdistrplus [75], which
uses maximum likelihood. For the Lasso we used the function
glmnet, available in the package glmnet [76], which includes a
cross-validation function that is used to optimize the variable
selection process. For RF we used the function randomForest,
available in the package randomForest [77]. This function has
some settings that can be modified by the user to obtain more
reliable estimates. The first is the number of trees to create. Since
RF is based on bootstrapping, which is a random process, we need
to fit numerous trees to obtain accurate estimates. According to
Grimm et al. [67] fitting 1000 trees should be sufficient to achieve
stable estimates, and this is what we did here. Another parameter
that needs to be optimized is the number of predictors to exclude
each time a regression tree is fitted. In this case the package ran-
domForest present a function, tuneRF, which allows to select a
range of values and test their accuracy using the internal out-of-
bag validation available in RF [67].
3. Results and discussion

As mentioned in the introduction, the proposed method per-
forms the spatial prediction of the wind resource using a statistical
learning approach that allows estimating both wind speed and
direction distributions with the corresponding local uncertainty.
For estimating the wind speed, we fitted a Weibull distribution to
each weather station of our dataset, shown in Fig. 1. The mapping
process was performed using the method described in Section 2.3.
The RF estimations of the scale factor C and the shape factor k are
shown in Figs. 3A and 3B, while the uncertainties, as the AD of the
set of estimations produced by RF for each location, are depicted in
Figs. 3C and 3D. It is interesting to notice that the Weibull para-
meters present almost opposite spatial patterns: where shape is
low, scale present high values and vice versa. The uncertainty
patterns follow the same rules: where shape presents low uncer-
tainty, scale presents higher values.

As mentioned, RF uses the bootstrap to resample the dataset
and create a series of trees for each location in the prediction grid.
These parameters and their related uncertainties were then used
to fit a Weibull distribution for each location on a 1 Km grid. Once
we have the full wind distribution we can compute its mean and
AD to provide planners with the average wind speed and a mea-
sure of the fluctuation of the wind resource. These indexes are
presented in Fig. 4A and C. For wind direction, RF estimated the
frequency of bins of 20°. From the RF estimates we can create a
circular distribution of the wind speed, and from it calculate the
mean wind direction and its AD, which are presented in
Fig. 4B and C.

An advantage of statistical methods compared numerical wind
flow models is that the former have ways to provide end users
with a measure of the site-specific uncertainty of the estimated
wind resource. As mentioned in Section 2.4, we developed an
approach to provide practitioners with a measure of the local
uncertainty of the map. This information is crucial because it
allows us to pin point areas where the map is less reliable and
therefore the estimates of wind speed and direction that we pro-
vide should be used carefully, and maybe more data would be
required to increase the local accuracy. The error maps are pre-
sented in Fig. 5. The spatial pattern of the error is similar for both
wind speed and direction. In general, the error is larger in areas
where we have a relatively low data density, such as in Scotland
and Wales. Statistical methods rely heavily on data coverage to



Fig. 3. A) Spatial distribution of the shape factor C; B) spatial distribution of the scale factor k; C) Uncertainty in terms of AD of the shape factor; D) Uncertainty in terms of
AD of the scale factor.
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increase the accuracy of the map. If the data we have do not cover
the full spectrum of terrains that we are going to encounter in the
mapping area, the accuracy of the method will be negatively
affected. In this case, in mountainous areas of Scotland and Wales
the data coverage is scarce, and this increases the uncertainty of
our estimations. The advantage of this method though is that it
can clearly identify these problematic locations so that planners
can take this into consideration. The confidence interval of the



Fig. 4. A) Map of the mean wind speed over the investigated time frame in m/s; B) map of the men wind direction in degrees; C) Wind speed deviation measured as mean
absolute deviation (AD); D) Wind direction deviation as AD.
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wind mean speed is presented in Fig. 5A. Uncertainty values are
generally very low, with a mean value of 0.07 m/s, and a maximum
value of 0.20 m/s. These values may seem negligible but if we put
them into context we realise that a 0.20 m/s error in just one site
means that in that area we have an average error that is almost
one third of the average cross-validation error. This is definitely a
very informative value to have during a feasibility study, since it
allows us to determine that in such areas the likelihood of the



Fig. 5. Map of the reliability of the estimation methods. A) Wind speed standard error in m/s; B) Wind direction uncertainty.
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estimated wind speed to be accurate is low and therefore an
additional investigation of the wind resource is necessary before
planning wind facilities here. This is a crucial information that is
not directly available when physical methods are used. For
example, Weekes and Tomlin [36] in their research mentioned the
fact that the average error they obtained was lower in rural areas,
and substantially higher in coastal areas. However, in their case
they did not have a way to define the spatial pattern of this error,
therefore the only thing their results may suggest to planners was
caution in coastal areas over the whole country. With a detailed
uncertainty estimation we are able to identify the coastal areas
where the estimation present lower accuracy values and distin-
guish those to coastal areas were, on the contrary, the accuracy is
high. For example, from Fig. 5A we can easily see that in England
no coastal area present uncertainties higher than 0.1 m/s, while in
North Wales and Scotland we have areas that present values of
uncertainty in the highest range.

The approach described in Section 2.5 was used to provide a
measure of validation for the mapping process. The results indi-
cate that for wind speed the method used in this research has a
RMSE of 0.70 m/s, a Mean Absolute Error (MSE) of 0.5 m/s, and a
bias of -0.01 m/s. This is the overall error of the map in comparison
to real weather observations. This value can be compared to pre-
vious works that employed both physical and statistical methods
to map the wind resource. Even though we cannot directly cor-
relate the results achieved in literature with ours, because of dif-
ferent settings and because RMSE is not the best index for com-
parisons [50,51], we can still compare our findings with the lit-
erature in order to assess where our work fits into the state of the
art of wind resource assessment. According to the review of pre-
vious research we presented in Section 1, the value of RMSE we
obtained is, to the best of our knowledge, lower than any other
previous test involving statistical or geostatistical algorithms. The
lowest value recorded in literature was the 0.98 m/s, achieved by
Foresti et al. [47] in Switzerland, which is probably more
challenging to map than Britain because of the different topo-
graphy. However, Luo et al. [43] used the same identical dataset to
compare several geostatistical algorithms and reported a mini-
mum RMSE value of 1.47 m/s, double what we obtained here.
Moreover, our results can also be directly compared to the accu-
racy of the Met Office UK small and mediumwind database, which
report a bias of 0.4 m/s [10]. We were able to achieve an accuracy
much lower than theirs, and with a validation process that
excluded 20% of the observations. This means that the long-term
wind map we generated can potentially replace the one in
use today.

This improvement is certainly due to the amount of environ-
mental covariates we used in this research. Nowadays, remotely
sensed covariates are publicly available and characterized by a
very good spatial resolution. This revolution in open data has the
potential of increasing the reliability of estimation methods based
on geostatistics, statistical learning and machine learning. How-
ever, these class of algorithms will always be as good as the
dataset used for training. If the training dataset does not properly
cover all the characteristics of the area under study, the results will
always have higher margins of error for certain zones, which is
exactly what happens here for the Scottish Highlands.

Physical methods can potentially overcome these limitations,
since they require relatively few sampling stations to perform the
wind resource assessment. These methods are the industry stan-
dard because they are thought to be the best way to assess the
wind resource over large regions. However generally speaking,
numerical wind flow models requires a substantially higher
amount of computing resources and time, compared to statistical
algorithms, to produce a wind speed map at national scale. In this
research, the training process of the statistical model and the
estimation, at 1 km of resolution, over an area of 244,119 Km2 took
1.81 minutes. The uncertainty estimation took longer (around
1 day), because the bootstrap needs to be run for a sufficient
number of times to obtain meaningful results (in this case 500
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times), but the whole process took in total just a small fraction of
the time reported in literature for wind mapping with determi-
nistic methods.

Regarding wind direction, the same cross-validation approach
was adopted to test the accuracy of the RF estimations. For each
test location we estimated the full direction histogram and then
compared the observed and the estimated mean wind direction.
The result is a RMSE of 9.5°. We did not find any mention to an
accuracy estimation for wind direction estimates in our review of
previous research, therefore we do not have ways to compare our
results with literature. However, for this parameter we used the
same robust validation methods we employed for wind speed and
the results indicate that the error is below the threshold of 20° we
used to divide the direction histogram. These information allows
us to have a relatively high level of confidence regarding the
reliability of the wind direction map.

In Fig. 5, we present two maps to provide a quick way of
visualizing the spatial pattern of the wind speed and direction
uncertainties. However, since we estimated the full distribution of
both wind speed and direction, showing one single index for each
location is extremely simplistic, compared to the amount of
information that we can generate from each predicted location in
the wind map. In fact, with the approach described in Section 2.4
we can determine precisely the propagation of the estimation
error to the full distribution of both wind speed and direction. An
example of the kind of output we can produce for each single
location at 1 Km of resolution is presented in Fig. 6. One of the
main issues when selecting a site for a wind energy project is a
spatial assessment over large regions with regard to the invest-
ment risk, which includes the wind resources available, the
financial risk, and the uncertainties related to construction and
operations [78]. If one excludes the risks related to financial
aspects, in addition to construction and maintenance failures,
which are not addressed in this work, then an optimal pre-
feasibility assessment of wind resources is critical and funda-
mental because it is subject to various uncertainties and can thus
significantly impact the success of a project [79]. At small scale,
the estimate of the uncertainties of the wind characteristics can be
Fig. 6. Site-specific wind speed and distribution uncertainty. By computing the full distr
to create plots similar to these for each estimated point of the map. These plots represe
integrated into a GIS based model when quantifying the uncer-
tainties in wind energy production and the impact of wake effect
within a wind farms [80]. These uncertainties can be directly
plugged into equations to estimate the potential energy output of
wind farms located in these areas. This would allow planners to
precisely estimate the amount of electricity available to produce
plus the confidence intervals of their results.
4. Conclusions

In this work we presented an approach based on statistical
learning to spatially estimate wind speed and direction distribu-
tions. The validation results demonstrate that this method pro-
duces better results compared to any previous example of statis-
tical methods applied to wind resource assessment, and compar-
able with studies that used numerical wind flow models. More-
over, since this method is capable of assessing its own accuracy,
we were able to create a map of the local estimation uncertainty,
which is something that only statistical methods are able to pro-
vide. However, this aspect is crucial for planning wind farms,
because in areas not properly covered by wind speed measure-
ments the site-specific accuracy of the map may well be relatively
low and this means that the wind distribution may be subject to
more fluctuations than reported on the map. With this method we
are able to pin point these problematic locations and consequently
warn planners that more data are required for obtaining an
accurate assessment. Moreover, the map uncertainty allows plan-
ners to precisely propagate the wind resource error to the power
output for a potential site in order to understand its impact on
future revenues. We did not cover this aspect in this paper because
we do not have access to power output data from existing wind
farms, which would be required to validate our results. However,
this is something we are planning to explore in the future.

The availability of numerous remotely sensed environmental
covariates allowed statistical methods to reach a point in which
their accuracy level is comparable with much more sophisticated
weather forecasting algorithms. However, statistical methods
ibutions of wind speed and direction, plus the site-specific uncertainty, we are able
nt the frequency distributions of wind speed and direction.
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present several advantages compared to physical estimators. They
are faster and computationally more efficient, and they can also
assess precisely the site-specific uncertainty in each estimated
location of the map. Moreover, statistical methods have clear
advantages over CFD algorithms, since they require less computer
power and time to execute. Based on the promising results of this
study, we will explore new ways of combining both physical and
statistical methods into hybrid algorithms in the future.
Acknowledgements

The authors would like to thank the UK Meteorological office
for providing the wind speed data for this research and some of
the covariates. Other data providers we would like to thank are:
NASA for the Aster DTM and the EU for the land-cover raster.
References

[1] Clark P. Green energy auction sets stage for cheaper solar and wind power.
Financial Times 2015.

[2] Department of Energy and Climate Change. Energy trends and prices statis-
tical. 2014-https://www.gov.uk/government/news/energy-trends-and-prices-
statistical-release-25-june-2015 Last accessed: 27.02.2015.

[3] Council, G.E Global wind report-Annual market update 2014-http://www.
gwec.net/wp-content/uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.
pdf-Last accessed: 16.11.2015.

[4] Lazard. Lazard’s Levelized Cost of Energy Analysis Version 8. www.lazard.com/
PDF/Levelized Cost of Energy-Version 8.0.pdf Last accessed: 27.02.2015.

[5] Brower M. Wind resource assessment: a practical guide to developing a wind
project. John Wiley & Sons; 2012.

[6] Traci, R.M., Phillips, G.T., and Patnaik, P.C. Developing a site selection metho-
dology for wind energy conversion systems. Final report, 15 June 1977-15
September 1978 (No. DOE/ET/20280-3). Science Applications, Inc., La Jolla, CA
(USA).

[7] Phillips, G.T. Preliminary user's guide for the NOABL objective analysis code.
Special report, 15 June 1977-15 June 1978 (No. DOE/ET/20280-T1). Science
Applications, Inc., La Jolla, CA (USA).

[8] Burch, SF, Ravenscroft, F. Computer modelling of the UK wind energy resource:
Overview report. Energy Technology Support Unit Report WN7055, UK
Department for Business Enterprise and Regulatory Reform; 1992.

[9] Best M, Brown A, Clark P, Hollis D, Middleton D, Rooney G, Thomson D, Wilson
C. Small-scale wind energy Technical Report. MET Office 2008.

[10] Technical bulletin-UK Wind Map-site search for small and medium wind-
http://www.metoffice.gov.uk/media/pdf/l/7/14_0058_Site_search_for_sml_
med_wind_projects.pdf-Last accessed: 16.11.2015.

[11] Jackson PS, Hunt JCR. Turbulent wind flow over a low hill. Q J R Meteorol Soci
1975;101(430):929–55.

[12] Bowen A.J., Mortensen N.G. Exploring the limits of WAsP: the Wind Atlas
Analysis and Application Program, in European Union Wind Energy Con-
ference, 1996. Göteborg, Sweden p. 584-587.

[13] Troen I., Petersen EL. European wind atlas. 1989.
[14] Bilgili M, Şahin B, Kahraman A. Wind energy potential in Antakya and

Iskenderun regions, Turkey. Renew. Energy 2004;29:1733–45.
[15] de Araujo Lima L, Bezerra Filho CR. Wind energy assessment and wind farm

simulation in Triunfo-Pernambuco, Brazil. Renew Energy 2010;35:2705–13.
[16] Himri Y, Himri S, Boudghene Stambouli A. Assessing the wind energy potential

projects in Algeria, in Renewable and Sustainable Energy Reviews
2009:2187–91.

[17] Radics K, Bartholy J. Estimating and modelling the wind resource of Hungary,
in Renewable and Sustainable Energy Reviews 2008:874–82.

[18] Adrian G. Synthetic wind climatology evaluated by the non-hydrostatic
numerical mesoscale model KAMM. Environmental Meteorology. Nether-
lands: Springer; 1988. p. 397–411.

[19] Frank HP, Rathmann O, Mortensen N, Landberg L. The Numerical Wind Atlas,
the KAMM/WAsP Method. Riso-R-1252 report from the Risoe National
Laboratory. Denmark: Roskilde; 2001. p. 59.

[20] Palma JMLM, et al. Linear and nonlinear models in wind resource assessment
and wind turbine micro-siting in complex terrain, in Journal of Wind Engi-
neering and Industrial Aerodynamics 2008; 2308-26.

[21] Undheim O, Andersson HI, Non-linear Berge E. microscale modelling of the
flow over Askervein hill. Boundary-Layer Meteorol. 2006;120:477–95.

[22] Bechmann A, Sørensen NN. Hybrid RANS/LES applied to complex terrain.
Wind Energy 2011;14:225–37.

[23] Fröhlich J, Terzi DV. Hybrid LES/RANS methods for the simulation of turbulent
flows. Prog. Aerospace Sci. 2008;44:349–77.
[24] Porté-Agel F, et al. Large-eddy simulation of atmospheric boundary layer flow
through wind turbines and wind farms. J Wind Eng Indust. Aerodynam.
2011;99:154–68.

[25] Silva Lopes A, JMLM Palma, Castro FA. Simulation of the Askervein flow. Part 2:
Large-eddy simulations. Boundary-Layer Meteorol. 2007;125:85–108.

[26] Ayotte KW. Computational modelling for wind energy assessment. J Wind Eng
Industr Aerodynam 2008;96:1571–90.

[27] DWD Deutschen Wetterdienstes. Annual report. 2009.
[28] National Center for Atmospheric Research. Annual Report. 2008.
[29] Brower M. Validation of the WindMap Program and Development of Meso-

Map. In: Proceeding from AWEA’s WindPower conference; Washington (DC);
1999.

[30] Yu W, Benoit R, Girard C, Glazer A, Lemarquis D, Salmon JR, Pinard J-P. Wind
Energy Simulation Toolkit (WEST): a wind mapping system for use by the
wind-energy industry. Wind Eng 2006;30:15–33.

[31] Al-Yahyai S, Charabi Y, Gastli A. Review of the use of numerical weather pre-
diction (NWP) models for wind energy assessment, in Renewable and Sus-
tainable Energy Reviews 2010; p. 3192-3198.

[32] Rodrigo JS, et al. Benchmarking of wind resource assessment flow models.
The Alaiz complex terrain test case 2013.

[33] Gasset N, Landry M, Gagnon Y. A comparison of wind flow models for wind
resource assessment in wind energy applications. Energies 2012;5(11):4288–322.

[34] Beaucage P, Brower MC, Tensen J. Evaluation of four numerical wind flow
models for wind resource mapping. Wind Energy 2014;17(2):197–208.

[35] Janjai S, Masiri I, PromsenW, Pattarapanitchai S, Pankaew P, Laksanaboonsong
J, Bischoff-Gauss I, Kalthoff N. Evaluation of wind energy potential over
Thailand by using an atmospheric mesoscale model and a GIS approach. J
Wind Eng Industr Aerodynam 2014;129:1–10.

[36] Weekes SM, Tomlin AS. Low-cost wind resource assessment for small-scale
turbine installations using site pre-screening and short-term wind measure-
ments. IET Renew Power Generation 2014;8(4):349–58.

[37] Weekes SM, Tomlin AS. Evaluation of a semi-empirical model for predicting
the wind energy resource relevant to small-scale wind turbines. Renew
Energy 2013 2013;50:280–8.

[38] Clerc A, et al. A systematic method for quantifying wind flow modelling
uncertainty in wind resource assessment. J Wind Eng Industr Aerodynam
2012;111:85–94.

[39] Walmsley JL, Taylor PA, Keith T. A simple model of neutrally stratified
boundary-layer flow over complex terrain with surface roughness modula-
tions (MS3DJH/3R). Boundary-Layer Meteorol 1986;36:157–86.

[40] Kaimal JC, Finnigan JJ. Atmospheric boundary layer flows: their structure and
measurement. Oxford: Oxford University Press; 1994 289pp: p. 289.

[41] Perera, M.D.A.E.S., Shelter behind two-dimensional solid and porous fences, in
Journal of Wind Engineering and Industrial Aerodynamics1981. p. 93-104.

[42] Lorenc, A.C., A Global Three-Dimensional Multivariate Statistical Interpolation
Scheme, in Monthly Weather Review1981. p. 701-721.

[43] Luo W, Taylor MC, Parker SR. A comparison of spatial interpolation methods to
estimate continuous wind speed surfaces using irregularly distributed data
from England and Wales. Int J Climatol 2008;28:947–59.

[44] Perry M, Hollis D. The development of a new set of long‐term climate averages
for the UK. Int J Climatol 2005;25(8):1023–39.

[45] Cellura M, Cirrincione G, Marvuglia A, et al. Wind speed spatial estimation for
energy planning in Sicily: introduction and statistical analysis. Renew Energy
2008;33:1237–50.

[46] Cellura M, Cirrincione G, Marvuglia A, et al. Wind speed spatial estimation for
energy planning in Sicily: a neural kriging application. Renew Energy
2008;33:1251–66.

[47] Foresti L, Tuia D, Kanevski M, Pozdnoukhov A. Learning wind fields with
multiple kernels. Stochastic Environ Res Risk Assess 2011;25(1):51–66.

[48] Douak F, Melgani F, Benoudjit N. Kernel ridge regression with active learning
for wind speed prediction. Appl Energy 2013;103:328–40.

[49] Veronesi F, Grassi S, Raubal M, Hurni L. Statistical learning approach for wind
speed distribution mapping: the UK as a case study. In AGILE. Springer
International Publishing; 2015. p. 165–80.

[50] Willmott, Cort J., and Kenji Matsuura. Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance. Climate research 30.1 (2005): 79.

[51] Fekete Balázs M, et al. Uncertainties in precipitation and their impacts on
runoff estimates. J Climate 2004;17(2):294–304.

[52] Webster Richard, Oliver Margaret A. Sample adequately to estimate vario-
grams of soil properties. J Soil Sci 1992;43(1):177–92.

[53] Met Office (2012) Met Office Integrated Data Archive System (MIDAS) Land
and Marine Surface Stations Data (1853-current). NCAS British Atmospheric
Data Centre: http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a
3234bd0-Last accessed: 05.03.2015.

[54] Center N.L.P.D.A.A. (2011) ASTER L1B. USGS/Earth Resources Observation and
Science (EROS) Center, Sioux Falls, South Dakota.

[55] Conrad O (2007) SAGA - Entwurf, Funktionsumfang und Anwendung eines
Systems für Automatisierte Geowissenschaftliche Analysen. Mathematisch-
Naturwissenschaftlichen Fakultäten vol. PhD. University of Göttingen.

[56] EEA Corine Land Cover (2006) http://www.eea.europa.eu/publications/COR0-
landcover-Last accessed: 05.03.2015.

[57] Jenkins GJ, Perry MC, Prior MJ (2008) The climate of the United Kingdom and
recent trends. Met Office Hadley Centre, Exeter, UK.

[58] Agarwal SK, Kalla SL. A generalized gamma distribution and its application in
reliability. Commun Statistics-Theory Methods 1996;25:201–10.

http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref1
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref1
https://www.gov.uk/government/news/energy-trends-and-prices-statistical-release-25-june-2015
https://www.gov.uk/government/news/energy-trends-and-prices-statistical-release-25-june-2015
http://www.gwec.net/wp-content/uploads/2015/03/GWEC&underscore;Global&underscore;Wind&underscore;2014&underscore;Report&underscore;LR.pdf-Last
http://www.gwec.net/wp-content/uploads/2015/03/GWEC&underscore;Global&underscore;Wind&underscore;2014&underscore;Report&underscore;LR.pdf-Last
http://www.gwec.net/wp-content/uploads/2015/03/GWEC&underscore;Global&underscore;Wind&underscore;2014&underscore;Report&underscore;LR.pdf-Last
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref2
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref2
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref2
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref3
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref3
http://www.metoffice.gov.uk/media/pdf/l/7/14&underscore;0058&underscore;Site&underscore;search&underscore;for&underscore;sml&underscore;med&underscore;wind&underscore;projects.pdf-Last
http://www.metoffice.gov.uk/media/pdf/l/7/14&underscore;0058&underscore;Site&underscore;search&underscore;for&underscore;sml&underscore;med&underscore;wind&underscore;projects.pdf-Last
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref4
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref4
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref4
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref5
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref5
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref5
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref6
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref6
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref6
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref7
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref7
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref7
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref7
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref8
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref8
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref8
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref9
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref9
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref9
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref9
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref10
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref10
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref10
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref11
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref11
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref11
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref12
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref12
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref12
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref13
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref13
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref13
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref14
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref14
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref14
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref14
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref15
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref15
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref15
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref16
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref16
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref16
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref17
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref17
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref17
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref17
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref18
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref18
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref19
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref19
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref19
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref20
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref20
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref20
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref21
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref21
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref21
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref21
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref21
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref22
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref22
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref22
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref22
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref23
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref23
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref23
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref23
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref24
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref24
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref24
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref24
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref25
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref25
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref25
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref25
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref26
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref26
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref27
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref27
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref27
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref27
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref28
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref28
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref28
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref29
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref29
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref29
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref29
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref30
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref30
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref30
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref30
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref31
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref31
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref31
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref32
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref32
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref32
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref33
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref33
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref33
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref33
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref34
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref34
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref34
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref35
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref35
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref35
http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0-Last
http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0-Last
http://www.eea.europa.eu/publications/COR0-landcover-Last
http://www.eea.europa.eu/publications/COR0-landcover-Last
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref36
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref36
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref36


F. Veronesi et al. / Renewable and Sustainable Energy Reviews 56 (2016) 836–850850
[59] Manwell JF, McGowan JG, Rogers AL. Wind Characteristics and Resources.
Wind Energy Explained Theory, Design and Application. 2nd Ed.John Wiley &
Sons Ltd; 2009. p. 43–5.

[60] James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical
learning. New York: Springer; 2013.

[61] Ray ML, Rogers AL, McGowan JG (2006) Analysis of Wind Shear Models and
Trends in Different Terrain. In: Proceedings American Wind Energy Associa-
tion Windpower.

[62] Schmidli J, Billings B, Chow FK, et al. Intercomparison of mesoscale model
simulations of the daytime valley wind system. Monthly Weather Rev
2010;139:1389–1409..

[63] Rogers AL, Manwell JF, Ellis AF (2005) Wind Shear over Forested Areas. In:
Proceedings of the 43rd American Institute of Aeronautics and Astronautics
Aerospace, Science Meeting.

[64] Tibshirani R. Regression shrinkage and selection via the lasso. J R Sta Soc Ser B
(Methodological) 1996:267–88.

[65] Breiman L. Random Forests. Machine Learning 2001;45:5–32.
[66] Hansen M, Dubayah R, Defries R. Classification trees: an alternative to tradi-

tional land cover classifiers. Int J Remote Sens 1996;17:1075–81.
[67] Grimm R, Behrens T, Märker M, et al. Soil organic carbon concentrations and

stocks on Barro Colorado Island-Digital soil mapping using Random Forests
analysis. Geoderma 2008;146:102–13.

[68] Wiesmeier M, Barthold F, Blank B, et al. Digital mapping of soil organic matter
stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant
Soil 2011;340:7–24.

[69] Cutler DR, Edwards Jr TC, Beard KH, et al. Random forests for classification in
ecology. Ecology 2007;88:2783–92.
[70] Veronesi F, Hurni L. Random Forest with semantic tie points for classifying
landforms and creating rigorous shaded relief representations. Geomorphol-
ogy 2014;224:152–60.

[71] Gislason PO, Benediktsson JA, Sveinsson JR. Random forests for land cover
classification. Pattern Recognition Lett 2006;27:294–300.

[72] Chan JCW, Paelinckx D. Evaluation of Random Forest and Adaboost tree-based
ensemble classification and spectral band selection for ecotope mapping using
airborne hyperspectral imagery. Remote Sens Environ 2008;112:2999–3011.

[73] Hoaglin DC, Mosteller F, Tukey JW. Understanding robust and exploratory data
analysis. New York: Wiley; 1983.

[74] Core Team R. R: a language and environment for statistical computing. R
Foundation for Statistical computing. Austria: Vienna; 2015.

[75] Marie Laure Delignette-Muller, Christophe Dutang (2015). fitdistrplus: An R
Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34.

[76] Friedman Jerome, Hastie Trevor, Tibshirani Robert. Regularization Paths for
Generalized Linear Models via Coordinate Descent. J Stat Software
2010;33(1):1–22.

[77] Liaw A, Wiener M. Classification and Regression by randomForest. R News
2002;2(3):18–22.

[78] Pinson P. (2006) Estimation of the uncertainty in wind power forecasting.
Thesis/Dissertation.

[79] Grassi S, Chokani N, Abhari R. Large scale technical and economic assessment
of wind energy potential with a GIS tool: case study Iowa. Energy Policy
2012;45:58–73.

[80] Grassi S, Junghans S, Raubal M (2014) Assessment of the wake effect on the
energy production of onshore wind farms using GIS. Applied Energy 07/2014;
http://dx.doi.org/10.1016/j.apenergy.2014.05.066.

http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref37
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref37
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref37
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref37
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref38
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref38
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref39
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref39
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref39
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref39
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref40
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref40
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref40
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref41
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref41
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref42
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref42
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref42
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref43
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref43
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref43
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref43
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref44
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref44
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref44
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref44
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref45
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref45
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref45
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref46
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref46
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref46
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref46
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref47
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref47
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref47
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref48
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref48
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref48
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref48
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref49
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref49
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref50
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref50
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref51
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref51
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref51
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref51
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref52
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref52
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref52
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref53
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref53
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref53
http://refhub.elsevier.com/S1364-0321(15)01383-0/sbref53
http://dx.doi.org/10.1016/j.apenergy.2014.05.066

	Statistical learning approach for wind resource assessment
	Introduction
	Numerical wind flow models
	Evaluation of uncertainty in numerical wind flow models

	Statistical methods
	Comparison between numerical wind flow models and statistical methods

	Materials and methods
	Study area and dataset
	Wind speed and direction
	Statistical learning approach
	Uncertainty estimation
	Validation
	Software

	Results and discussion
	Conclusions
	Acknowledgements
	References




