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Abstract Private transport accounts for a large amount of total CO2 emissions, thus signif-
icantly contributing to global warming. Tools that actively support people in engaging in a
more sustainable life-style without restricting their mobility are urgently needed. How can
location-aware information and communication technology (ICT) enable novel interactive
and participatory approaches that help people in becoming more sustainable? In this survey
paper, we discuss the different aspects of this challenge from a technological and cognitive
engineering perspective, based on an overview of the main information processes that may
influence mobility behavior. We review the state-of-the-art of research with respect to vari-
ous ways of influencing mobility behavior (e.g., through providing real-time, user-specific,
and location-based feedback) and suggest a corresponding research agenda. We conclude
that future research has to focus on reflecting individual goals in providing personal feed-
back and recommendations that take into account different motivational stages. In addition,
a long-term and large-scale empirical evaluation of such tools is necessary.
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1 Introduction

1.1 Motivation

Transport currently accounts for about a quarter of global CO2 emissions [4], thus having a
significant effect on global warming [41]. Given current trends, this figure is to increase by
roughly 50 % by the year 2030 [4]. Even if emissions were to be eliminated immediately
and completely, the atmospheric concentration of CO2 would only be reduced by 40 ppm
(i.e., roughly equivalent to its 1995 levels) in the remainder of the 21st century [79]. In order
to (at least) slow down this trend, it is indispensable that immediate actions are taken by leg-
islators, industry, and private individuals alike. Studies have shown that even small changes
in people’s individual behavior can lead to significant reductions in carbon emissions [86].
For example, Dietz et al.[26, p.18452] estimate that the adoption of easily implementable
actions on a household level (e.g., changing one’s driving behavior by slower acceleration
and adhering to speed limits) can “save 123 million metric tons of carbon per year”, a figure
that equals 7.4 % of U.S. national carbon emissions.

Common approaches that aim at changing a person’s behavior rely on providing generic
normative information, i.e., communicating whether or not a given behavior is appro-
priate in a given context (e.g., “No littering!”). However, considering the fact that most
mobility-related activities are shaped by an individual’s spatial, temporal, and social con-
straints, as well as are not tightly bound by social norms, generic normative information
(e.g., “Use public transport more often”) is often too unspecific. For someone who has no
(perceived) choice as to use privatized transport, or does not know of any alternatives to
perform an activity equally effectively (but in a sustainable manner), more targeted forms
of communication are needed.

In this paper, we explore how location-aware information and communication technol-
ogy (ICT) can contribute to support private individuals in engaging in a more sustainable
life-style without posing unrealistic restrictions on their mobility needs. ICT enables novel
interactive, participatory, and collaborative approaches to support people in becoming more
sustainable, because it can provide real-time, user- and location-specific feedback on cur-
rent, as well as recommendations for future behavior. In two meta studies Hamari et al. [39,
40] found that ICT aimed at changing a person’s behavior can indeed be effective, i.e., most
analyzed studies showed positive or at least partially positive results.

Although such “eco-feedback” technologies targeted at behavior change are an active
research area (cf. [27]), there are still many open questions on how such systems can be
designed effectively, e.g.:

– How can we avoid systems that patronize users, i.e., dictate behavior and do not allow
for empowerment? (cf. [15, 82])

– How can we integrate a person’s “principle goals” [63] (e.g., to become more
sustainable) into their daily and established routines?

– How can we account for an adequate use of “motivational affordances” [96], i.e., how
can we design systems that are easy to attend to, engaging, and take individual skillsets
into account? Often, user inhibitions towards a system cannot be overcome due to its
complexity, or perceived lack of usefulness.

– How can feedback be designed, such that it is equally effective across all of one’s
motivational stages (cf. [43])?
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– How can we make sure feedback on current behavior affects long-term behavior, i.e.,
how sustainable is behavior change?

– How can we harvest the expertise of large numbers of socially connected people to
solve issues of sustainability collectively and interactively? (cf. [58])

1.2 A running example

Throughout this paper we will use a running example of two individuals, each of whom
has a different background and preferences with respect to mobility behavior and attitudes
towards sustainability.

Our first character’s name is Bob and he is a high-school teacher who lives in the out-
skirts of Zürich. Bob does a daily 45 minutes commute by public transport. After work, he
frequently goes to the gym for a workout, or (if time permits) runs errands, such as buy-
ing groceries. For these after-work activities he typically uses his own car. Bob is a typical
LOHAS,1 i.e., he is concerned with reducing his CO2 footprint and wants to live an active
healthy life. Bob is not particularly technology-savvy, likes to play (board) games, and is
mainly interested in finding an efficient way to integrate his goals towards becoming more
sustainable into his daily routine.

Our second character’s name is Alice and she is a freelance designer who lives in
downtown Zürich. She does a daily 10 minutes commute, for which she takes her pri-
vate car. Her job involves a lot of traveling (abroad and domestic) under restrictive time
constraints. In general, she has problems fitting all her commitments into her daily sched-
ule. Environment and sustainability are not among her top priorities, because she fears
that becoming more sustainable would interfere with her job. Alice is technology-savvy
and mainly looking for a mobile planning app that helps her cope with her schedule
(cf. [1–3]).

1.3 Contribution

Designing an effective and successful system that promotes sustainable mobility behavior
faces all of the challenges mentioned above. For example, Alice does not want to feel patron-
ized by the system she uses, because she has a strong sense of freedom and is looking for
technology that supports (but not dictates) her activities and any associated time manage-
ment. Similarly, Bob would like to use such a system, but is skeptical about its usefulness
and the long time required to get familiar with it. In addition, he is afraid that the applica-
tion would not be capable of taking into account all his different goals implied by his daily
routines.

As we will discuss in this paper, supporting Alice in making their activities more sus-
tainable is a major challenge, because it requires the careful embedding of an external goal
(i.e., sustainability) into her internal personal activity history, as well as her schedule. The
embedding of external goals is ideally done by supporting people in adding them to their
own goals. This requires both supporting their future activity planning, as well as giving
goal-dependent feedback about their past.

1Lifestyles of health and sustainability
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In this paper, we provide a systematic survey of research challenges, the corresponding
state-of-the-art, as well as future research opportunities of location-aware ICT targeted at
making people’s behavior more sustainable. For this purpose, we identify the information
necessary to allow for behavior change in terms of required information processes, taking
into account both the analysis and planning aspects of sustainable activity alternatives. We
then identify open research questions by means of a literature review on the state-of-the-
art research, ranging from goal planning and activity detection, over activity scoring, to
the effective communication of sustainable alternatives. As a result we suggest a research
agenda that aims at tackling the identified open challenges.

1.4 Organization

In the next section, we argue why location-aware ICT can act as a supportive tool for people
who want to engage in a sustainable mobility life-style. In Section 3, we discuss central
information requirements involved in influencing and changing mobility behavior. Section 4
is a detailed discussion of related information technology, state-of-the-art research and open
research gaps for each required information component. Section 5 concludes our discussion
in terms of a research agenda.

2 Location-aware ICT: supporting behavior change

2.1 Information requirements for behavior change

There are several information requirements necessary to allow for some established behav-
ior to be changed. Note, the following discussion does neither account for the psychological
processes necessary to form an intention or attitude towards a change in behavior, nor does
it treat the issue of linking attitude and behavior (cf. [95]).

Behavior change requires becoming aware of one’s current and past behavior, as well
as about the existence of possible past and future alternatives. One also needs a way to
approve or disapprove of past behavior, as well as rate and rank planned future behavior,
both against a previously defined norm or goal (for two examples, see Fig. 1). The rating
and ranking process of planned future behavior often becomes complex as various different
and conflicting goals need to be integrated.

There are several difficulties realizing behavior change, without the support of informa-
tion technology. First, people are seldom aware of their routine behavior, because large parts
are carried out subconsciously [77]. This makes it challenging to effectively self-monitor
behavior. Second, it is difficult to become aware of alternatives to established behavior.
People are biased by the availability [85] of their past routines and thus have difficulties
mapping out the space of possibilities. Third, efficiently dealing with many goals at a time
exceeds the cognitive capabilities of most people [19], and may be one reason why they
often do not succeed in integrating “principle goals” [63] with daily necessities. Fourth, the
rating and ranking of possible future behavior is difficult because it is often not possible to
determine an activity’s metric and its impact, especially in a systemic context.

2.2 What can location-aware ICT contribute?

In this paper, we argue that location-aware ICT can effectively support people in dealing
with these problems or at least mitigate them. Mobility has steadily been increasing, and so
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Fig. 1 Examples of behavior comparison against a norm

has the availability and people’s use of location-aware ICT. As a matter of fact, most people
living in one of the privileged and developed parts of the world belong to a mobile infor-
mation society. One prominent example of location-aware ICT are location based services
[66], which exploit geospatial information about the user and her surroundings for providing
spatio-temporal decision support [68, 75].

Location-aware ICT can be utilized in two ways: for direct support in mobile decision-
making and for evaluating various aspects of people’s mobile behavior. The dynamic nature
of mobility resulted in a shift of people’s information needs because they often need to
make quick decisions on the spot. The interaction between environments, individuals, and
mobile devices is thereby critical for understanding how people make their decisions while
on the move. Mobile decision-making involves a multitude of spatio-temporal constraints,
relating not only to people’s spatio-temporal behavior in large-scale space [51] but also to
their interaction with mobile devices, and perceptual, cognitive, and social processes.

While on the move, (geo)-sensors can be utilized for recording both tracking and context
information, such as weather, pollution indicators, or mode of travel. In addition, it has
become possible for humans to annotate some performed mobility behavior themselves.
For example, users can rate their own mobility performance and peers can tag each other’s
mobility behavior with “likes” (cf. [73]).

These data offer insights into people’s mobility behavior and can be of use in analyz-
ing, evaluating, and predicting human mobility patterns from both an individual and an
urban perspective. For example, one can detect similarities and differences between trav-
elers and their paths [92, 93]. Furthermore, ICT can support context and location aware
planning, e.g., through the integration of personal information such as calendars or to-do
lists [1].

However, one of the major challenges from a Human-Computer-Interaction (HCI) per-
spective lies in how context sensitive information should effectively (i.e., timely and useful)
be fed back to a person.
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Fig. 2 Possible functional roles of persuasive technology (adapted from [31])

2.3 Persuasive vs. supportive technology

Persuasion can be defined as “an attempt to change attitudes or behaviors, or both (without
using coercion or deception)” ([31], p. 15). It is worthy to note the differences between
persuasion and coercion or deception. Coercion is defined as “the act to make (someone) do
something by using force or threats”, while deception is “the act of making someone believe
something that is not true”.2 In contrast, persuasion “implies voluntary change - in behavior,
attitude, or both” ([31], p. 15). Thus, persuasive technologies are interactive technologies
that intend to change a person’s attitudes or behaviors [30].

Technology can persuade in various ways (see Fig. 2), depending on its functional roles
[31]. Technology as a tool can persuade through making some behavior easier to do, i.e.,
by increasing a user’s capability for some task. Technology as a social actor can persuade
through providing positive feedback (e.g., rewards), i.e., by creating a relationship between
the user and the system. Finally, technology as a medium can persuade by letting one explore
cause and effect relationships (e.g., by means of simulation), i.e., by providing people with
experience and helping them to develop an expertise.

Persuasive technologies that aim at making people more sustainable, either through
strong (behavior comparison against a norm) or passive (behavior presentation in a sus-
tainable context) types of persuasion, form a very active field of research in the HCI
community (cf. [27]). Despite its popularity the “persuasive sustainability” approach has
recently spawned some critique questioning both its philosophical and practical implications
(See for example [15, 44]).

Critiques have mainly challenged persuasive technologies because of their inherent con-
cept of behaviorism. In particular, the sole focus on measurable effects, e.g., the amount
of CO2 produced for a given activity, neglects the semantics of the corresponding actions
and their underlying causes, especially if put in a systemic context (See also [15]). The
problem with many persuasive technologies is that their design is based on three erroneous
assumptions:

– Rationality: There is strong empirical evidence that the notion of an agent who strives
to optimize expected utility by using all available information does not hold up in

2www.merriam-webster.com

www.merriam-webster.com
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reality [47]. Thus, we cannot assume that optimal information regarding sustainable
alternatives (determined by means of computation) is necessarily used by a person to
optimize her behavior.

– Isolated Individuals and Behavior: People are social actors and play different roles in
different social contexts [29]. These roles are reflected by different information require-
ments. Thus, the concept of “one size fits all” cannot be applied to provide meaningful
information.

– Technological Paternalism: Users can feel patronized, if the system designer spec-
ifies what sustainable behavior means in a top-down manner. In this way, a system
may violate an individual’s psychological need for autonomy, i.e., to experience choice
[96].

The system we envision as a result of our review takes this critique of persuasive systems
into account. However, we prefer to call such a system supportive technology rather than
persuasive technology. This does not imply, however, that such a supportive system does not
have the means of persuading people of a behavior change. In fact, it may be more effective
because it attempts to overcome the limiting aspects of behaviorism, as sketched above.

3 Information requirements for behavior change

In this section, we identify relevant information processes that are involved in the anal-
ysis of current and past, as well as the planning of future mobility behavior. Processes
together form a feedback loop which represents information requirements necessary to
influence user behavior. This feedback loop involves (1) measuring behavior, (2) relating
it to other behaviors or norms (relevance), (3) “illuminating the path ahead” (communi-
cation of consequences), and (4) user action, an approach often used in human computer
interaction (Compare e.g. [36]). This approach helps us decide which processes should
be supported by a behaviour influencing system and also allows identifying and dis-
cussing research gaps (See Section 4). Note that our process schema is preliminary and
serves only to systematically structure our paper, not to simulate or represent the involved
processes.

Figure 3 gives an overview of involved processes, which are depicted as rectangles. Their
inputs and outputs are denoted by parallelograms and linked with directed arrows.

Consider the left part (analysis) of our model. People perform various activities as part
of their daily routines. For example, Bob takes the train at 5 pm and then takes his car one
hour later, while Alice takes her car at 8 am and at 6 pm. These activities (i.e., corresponding
transport modes) need to be detected and collected in a user’s individual activity history.
Activity histories are one aspect required in order to score (rate) a user’s past behavior.

However, meaningful activity scores depend on both “principle and specific” goals [63]
that users want to pursue on their own, or the system designer intends to plant on them.
For instance, Bob has the principle goal to “become more sustainable” and the specific goal
to “take the car only once during the week”. The scoring process therefore needs to take
into account many goals on different hierarchical levels. Scoring activities in a context-
dependent manner avoids to produce unrealistic suggestions that cannot be integrated into
one’s mobility life-style. For example, scores that account for motorized transport are not
negative per se, but need to be generated as part of a systemic context, e.g., take into account
that Bob cannot do without his car after 12 a.m. because where he lives there is only limited
service of public transport.
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The integration of different goals also requires taking into account different qualities of
activities. For example, being on time for meetings is of highest priority to Alice, while
Bob would like to avoid using his car altogether whenever he runs his errands. Therefore,
one major task is to detect the different goals (and their qualities) and to integrate them
into the scoring process. Furthermore, scoring past behavior by taking into account realistic
alternatives allows a user to develop personal benchmarks.

However, analyzing the past alone is not sufficient to provide useful suggestions for
behavior change. A user also needs a way to plan alternative future behavior (See the right,
planning part of our model). Future goals are output of a goal planning process, and they
are input of processes that schedule a concrete future activity (activity scheduling). How-
ever, in order to introduce behavior change, the space of possible activities must be analyzed
and alternatives need to be computed and chosen. For the latter process, it is crucial that
alternatives need to take account of the same goals. Similarly, the scoring of these planned
alternatives needs to be based on future goals. For example, Bob plans to avoid the car for
shopping groceries. In order to do so, he needs to figure out alternative transport possibil-
ities that minimize CO2 and enable him to get his errands done, for example, using the
supermarket next to his school.

Finally, by communicating scored results, a user may or may not adjust her activity
behavior and its associated planning, which results in a feedback loop.

Fig. 3 Information processes required to provide meaningful suggestions for behavior change. Rectangular
boxes are processes and parallelograms are inputs and outputs
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4 Information technology for behavior change: a survey

In this section, we elaborate on the different components of our model, introduced in Section 3.
In particular, we discuss the state-of-the-art concerning technical and theoretical approaches
and identify open research gaps. We start with the challenges regarding the evaluation of
activities, i.e, their scoring (See Section 4.1) and communicative aspects of providing feed-
back on a user’s behavior (See Section 4.2.1). Section 4.3 discusses various aspects of
activity, goal, and intention recognition. In Section 4.4 we elaborate on activity prediction
and support for activity planning.

4.1 Activity scoring

In our model (See Section 3), activity scoring depends on a user’s concrete activity history,
her past and future goals, as well as any activity alternatives. Goals include both exter-
nal (i.e., the system designer’s perspective) goals, as well as user goals, all of which may
conflict on various hierarchical levels. Thus, the challenge is to integrate them such that a
meaningful score can be generated [74], which is the basis for communicating alternatives
or evaluations of past behavior.

Note, our wording score is influenced by recent attempts to “use design elements charac-
teristic for games in non-game contexts” [25]. Other examples related to this “gamification”
approach are to give users rewards for some performed activity, as well as high-score lists
ranking users according to their score. One of the challenges in enabling meaningful gamifi-
cation lies in designing scores which allow users to internalize externally intended behavior
[60].

4.1.1 Domains and qualities of scoring

The first step in building a scoring framework (See Fig. 4) is to select the activity types
to be scored and assess which qualities of these activities should be taken into account.
Qualities can come from activities themselves, as well as from activities’ outcomes [73]. In
our attempt to support sustainable mobility behavior, activities like “Bob takes the train at 8
am for 20 minutes”, or “Alice drives her car at 5 pm for 10 minutes” are of particular interest.
Qualities of those activities are, e.g., velocity, cost, or CO2 emissions, while the qualities of
their outcomes could take into account whether one arrived at the intended destination on
time.

It should be noted, however, that the selection of qualities will often be restricted by the
available technology. An activity’s velocity can be measured in a relatively accurate and
precise manner using accelerometers and GPS sensors [78] while monetary cost or CO2
emissions will have to be approximated in some way.

4.1.2 Standardization

To allow for meaningful scores, selected qualities need to be standardized. This can be done
in different ways, i.e., by comparing them to:

1. A user’s own past. This allows to measure an individual user’s change. For example, if
Alice starts using public transport more often, her measured CO2 emissions will drop,
which can result in a higher score.
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Fig. 4 Model of the scoring process. Rectangular boxes are processes, parallelograms are outputs. (Source:
Authors)

2. The behavior of others. An example would be the comparison of CO2 emissions of a
given transportation mode of Bob against Alice on a particular day.

3. Established norms. CO2 emission contingents for a user or a group of users could, for
instance, be based on the 2 ◦C standard of temperature rise.3

4. Conceivable alternatives. This standardization method compares an activity’s quality
with what a user might have done instead. For example, staying at home (cf. teleworker)
instead of commuting to work would reduce CO2 emissions, but is not an option for
everyone. Likewise, using public transport instead of a car might be an alternative for
urban dwellers but not for people living in rural areas.

The last point challenges a system designer to embed external goals into a user’s context
by providing alternatives that are favorable under these additional goals. This requires a
detailed understanding of the user’s goals as well as restrictions imposed upon the user.

4.1.3 Criteria and score construction

Once standardized, it needs to be determined how far qualities contribute to a goal. By
doing so, qualities become concrete criteria. Contribution towards a goal can be analyzed
by comparing values of qualities to a favored state implied by a goal. For example, keeping

3“Copenhagen accord”. U.N. framework convention on climate change. United Nations. 18 December 2009.
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CO2 emissions within internationally established contingents might be considered a favored
state with respect to climate protection. However, it might make more sense to choose a
personalized standard as a favored state, such as minimizing CO2 savings with respect to
one’s own past or in competition with others, in order to keep a user’s motivation alive.

After criteria have been established, they can be turned into a single score. Several
strategies to integrate multiple criteria can be used, ranging from compensatory to non-
compensatory multi-criteria decision making techniques [46]. For example, if we want to
combine Alice’s weekly activities into a single score, we have to integrate her criteria
for being time-efficient with a possible system designer’s criteria for green mobility (e.g.,
reduction of CO2 emissions by some factor x). This is difficult given the fact that these
criteria will often contradict each other.

4.2 Communication and motivation

A major part of effectively influencing user behavior is to communicate sustainable activity
alternatives in a meaningful way. This has to take into account psychological, sociological
and technical aspects.

In particular, a system should strive for offering a high number of motivational affor-
dances [96]. The concept of a motivational affordance comprises the actionable properties
between a user and the system, and whether it can support a user’s motivational needs (e.g.,
autonomy, competence, relatedness). Zhang [96] proposed a number of design principles
for ICT that aim at offering high motivational affordances. For example, a user’s need for
autonomy should be supported by providing a personalized experience. Also, the need for
feeling competent can be satisfied by providing challenges, e.g., in the form of games and
learning systems.

4.2.1 Means of feedback communication

There are numerous ways to communicate feedback on a user’s behavior. Yun et al. [94]
distinguish between instructional, motivational, and supportive ways of encouraging a more
sustainable life-style. Instructional approaches include education (i.e., “why”), advice (i.e.,
“how”), and self-monitoring (i.e., “what is”). Motivational approaches include setting goals,
allowing for comparison (own and other’s performance), keeping one engaged (e.g., to
appeal to one’s curiosity). Finally, supportive approaches encompass providing people with
communicative tools (e.g., social networks), ways to self-control behavior (e.g., by reducing
complex tasks into an automated one), and rewards for the accomplishment of some target
behavior.

Froehlich [32], as well as Fogg [31] suggested a number of design dimensions relevant
to the communication of feedback. Here we elaborate on four of them, i.e., the frequency,
timing, measurement unit, and recommending action of a feedback.

The ideal frequency of feedback is difficult to determine because it depends on several
context-related factors, including a user’s motivational stage [43]. Fischer [28] found that
frequently updated information on one’s behavior increases the awareness between one’s
actions and their impact. However, on people like Alice who are still somewhat reluctant
whether or not they should act upon feedback to become more sustainable high intensity
feedback may have negative effects (cf. [59]).

Timing is equally important and the challenge is to find an opportune moment for feed-
back [31]. It often involves (a combination of) elements of the environment (e.g., location
or social context), user characteristics (e.g., mood, motivation, self-worth, or feelings of
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connectedness to others), and the currently performed activity [22, 31, 84]. In general, feed-
back should be given timely in relation to the behavior that triggered the feedback to ensure
a user perceives the consequences of her actions (cf. [96]).

A choice of measurement units can help to provide users with easily understandable
feedback [28]. For example, scores can have different scale levels, ranging from nominal
over ordinal and interval to ratio [81]. If Bob, for instance, received a badge (as a reward)
for completing the challenge of using his car only 2 days of the week, this means that a
ratio scale (CO2 emission sums) was turned into a nominal scale (according to a minimal
amount of CO2 savings). An example for an ordinal scale are narrative progression icons as
used by “UbiGreen” [33] which reflect individual mobility behavior during a week. Another
possibility to simplify score communication is to change the scale level of a score depending
on the user and context, e.g., through classification into understandable categories. Another
possibility to ensure comprehension of feedback is to use analogies instead of quantitative
measurements (e.g., “Bob, this week you saved the equivalent of a movies ticket by taking
the train instead of the car!”).

Recommending actions is more effective if they are (perceived to be) highly personalized
for a specific user in a given context (See Fogg [31] for an overview of relevant studies).
In addition, the type of wording of a suggestion can determine whether or not it leads to
desirable behavior. In one study, Schultz et al. [76] demonstrated a boomerang effect in the
behavior of some of the participants to whom the researchers presented normative descrip-
tive messages on average neighborhood energy usage. While participants above the average
attempted to reduce consumption, those who were below the average increased consump-
tion. Apparently those participants who were below the “norm” felt they could increase
consumption since they were better than the average. Schultz et al. (ibid.) argued that this
boomerang effect does not occur if users are provided with an additional injunctive message,
e.g., in the form of smileys indicating social approval or disapproval.

4.2.2 Motivation

Many theories on motivation advocate models that consist of several stages. For instance,
the transtheoretical model [64] argues that one’s motivation undergoes five stages: precon-
templation, contemplation, preparation, action and maintenance. During precontemplation,
one is either unwilling to change or unaware of a problem in their behavior (cf. our character
Alice). During contemplation, one knows that a behavior change is required and intends to
change in the near future. During preparation, one is committed to change and works on a
concrete plan on how to achieve this (cf. our character Bob). During action, one has actively
and substantially changed their behavior over some longer period of time. During mainte-
nance, one attempts to keep up with the new behavior. Note, it is possible for someone to
be in different motivational stages for different forms of behavior.

Depending on a user’s current stage, different communication means should be applied
in order to ensure progression to the next, or avoid relapsing to a prior stage. For example,
early stages (where users are unwilling or are not aware of concrete alternatives to their
behavior) need communication on an educational and informational level [43]. Users in the
progress of changing their behavior need regular feedback and comparison to their previous
behavior, while users in later stages need irregular reminders [43].

Another important distinction is whether a user is intrinsically or extrinsically motivated
[71]. In general, intrinsic motivation is desired, as it allows long-lasting behavior change. In
addition, people who are intrinsically motivated (e.g., interested, curious, feeling of compe-
tence and enjoyment) should not be exposed to extrinsic forms of motivation, e.g., by giving
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them rewards (cf. [24]) for their behavior. Instead, intrinsic motivation should be controlled
by giving positive feedback [23], or alternatively letting a user experience “freedom” [45]
and choice in terms of which goals she wants to pursue. In contrast, people who are extrin-
sically motivated can be presented with a variety of action choices to increase their sense of
intrinsic motivation [45].

4.2.3 A note on empirical studies

Although there is a large number of studies that aim at supporting people to engage in a
more sustainable life-style, many of them suffer from methodological issues (cf. [15, 34,
39, 40]), which makes it difficult to evaluate their validity and reliability:

1. Small sample size: In an evaluation of 95 studies that tested persuasive technologies,
Hamari et al. [39], found that the participants’ sample sizes were rather small (median
N = 26).

2. Lack of control group: Some of the studies reviewed by Hamari et al. [39, 40] did
not include control groups. Froehlich [34] specifically looked at 8 studies that included
eco-feedback technologies and out of the 4 studies that reported behavior change none
included a control group, and only one accounted for baseline data.

3. Short time-frame: Only one of the 36 studies reviewed by Brynjardottir et al. [15]
can be considered long-term (i.e., 3 months). In fact, only 2 studies were found to last
longer than one month. The relatively short time frames typically found in such studies
may lead to a novelty effect that “might have skewed the test subjects’ experiences in a
significant way” [39, p.127].

4. Lack of psychometric measurements: In many studies, no psychometric measure-
ments about the subjects’ experiences and attitudes were used [40].

5. No distinction between motivational affordances: Often, the success of the persua-
sive system was evaluated as a whole [40], without testing the effects of motivational
affordances (e.g., rewards, feedback, suggestions, etc.) individually.

6. No statistical significance: Most evaluations relied on descriptive statistics alone [39]
and claim behavior changes but “without any statistically significant effect on the
intended metric” [15].

4.3 Transparency of the past

In order to know how behavior could be changed in the future, one first needs to know how
people have behaved in the past. However, past behavior can only become transparent once
mobile applications can reliably recognize a user’s activity pattern. Furthermore, evaluating
and scoring past behavior (See Section 4.1) such that it is useful for personal feedback
requires to take into account a user’s underlying personal goals and constraints. Only in this
case can behavior scoring become personal and integrated into a person’s life routines. In
the remainder of this section we explore state-of-the-art approaches and principle technical
challenges for the recognition of a personal history of activities (See Section 4.3.1) and their
underlying goals and intentions (See Section 4.3.2).

4.3.1 Activity recognition

As stated in Section 3, daily routines consist of a sequence of activities (which form the
activity history). Take Bob for example, who boards the train in the morning, takes the ride,
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steps off, and walks to his school. The process of activity detection maps the current state of
a person to an activity. Activity detection is difficult when performed algorithmically, espe-
cially if only little sensory information is available. For state-of-the-art activity detection
using mobile phones or MSPs4 the input consists of sensor readings such as location, accel-
eration, step count, or compass heading. Using various techniques, these inputs are mapped
to a predefined set of activities. In the following, the technical challenges when inferring
transportation activities are summarized:

– Accurate, frequent, and energy-efficient sensor readings: Activity detection can
utilize a variety of sensors [61]. While GPS provides the most accurate location infor-
mation, it also causes quick power drains and is unavailable indoors [57]. On the other
hand, accelerometer data is always available and relatively cheap to read (in terms of
the battery). It is therefore important to find sets of sensors to be used in different sit-
uations [91]. Parkka et al. [61] provide a comparison between different sensors and
their suitability for activity detection. Actual implementations use a variety of sen-
sors: accelerometer only [91], accelerometer and GSM location [78], accelerometer and
GPS [57], GPS only [80] or a combination thereof, e.g., acceleromenter, barometer,
and microphone [69]. While accelerometers yield the best overall results, new algo-
rithms for GPS-based activity recognition are gaining momentum, especially in terms
of accurate detection rates [13, 14].

It is noteworthy that phone manufacturers start to integrate activity recognition using
specialized hardware and operating system functions with the goal of reducing power
consumption.5

– Models that capture the activity domains and yield high classification accuracy: A
number of models for activity detection is currently being analyzed. Liao et al. [53] test
an unsupervised layered Markov model that is able to predict user goals and activities,
and determines when a user diverges from a known or planned route. Stenneth et al. [80]
examine and compare Bayesian net, decision tree, random forest, naı̈ve Bayesian and
multilayer perceptron algorithms on previously annotated data. Shin et al. [78] favor
an approach with predefined thresholds in sensory data as well as time. Riboni and
Bettini [69] propose an ontology that asserts activities that can be performed at a user’s
location. The prediction accuracy usually ranges from about 75 to 95 % for various
activities, depending on the sensor output difference.

– User-dependent activity model: While Berchtold et al. [11] built a user-specific clas-
sifier, a lot of research solely relies on sensory data and is user-agnostic [78]. As users
have different patterns for certain activities, classification accuracy can be increased by
building personalized classifiers, or at least by training with different data [11]. The use
of ontologies can further decrease the set of possible activities for a single user, thus
yielding a higher accuracy [69].

– Training data for supervised learning: While it is a common approach to have labeled
data, i.e., users annotate data with corresponding activities [78], other approaches evalu-
ate unsupervised learning. They enable learning important places and distinct activities,
but are often not able to detect their semantics, e.g., activity type labels [53]. Because

4Mobile sensing platforms
5cf. http://en.wikipedia.org/wiki/Apple M7

http://en.wikipedia.org/wiki/Apple_{M}7
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manually labeling data requires users to actively cultivate data, it can prevent scaling
[48]. Thus, for supervised training it is always required to initially learn activity labels.
One of the important questions is where one can get the necessary data from?

– Integration with other knowledge sources. Using additional data such a user’s calen-
dar entries [55], street-topology information [80], or ontologies [69], activities can be
detected with higher accuracy. For example, past activities can be associated more eas-
ily with current ones using a calendar. Also, possible activities can be constrained by
the restrictions given by an underlying road network. Furthermore, an ontology can be
used to assert activities that are allowed in certain places.

In summary, to be able to deduce higher-level goals, a solid detection and classification
of activities is needed. Accuracy can be increased by choosing suitable sensors depending
on the current activity, a model that both captures the problem domain and allows user
specific adjustments, and the integration of external knowledge. However, there is a lack
of a combined solution that optimizes all the noted points. Furthermore, there is only little
research that evaluates how and which external knowledge sources can be integrated with
existing detection models.

4.3.2 Goal and intention recognition

In order to put an activity into a person’s context and to help her evaluating it from her own
perspective, it is necessary to know about the goals and intentions underlying the history of
activities. How can we find out about these goals?

Children and adults are adept at guessing why someone has done something, i.e., infer-
ring a person’s intention from perceptions of his or her behavior, while computers are not
[42]. The underlying inference problem was called inverse planning by Baker et al. [10].
Observers invert a probabilistic generative model of plans to infer their goals starting from
their behavior. This is a typical example of abductive reasoning, i.e., inferring probable
causes given the results and a set of explanatory models.

If inverse planning is an abductive reasoning task, then one could use abductive reasoning
techniques to solve it technically. Logically, abduction can be split into two subtasks [5]:
(1) inference strategy (infer activities from goals), and (2) search strategy (for probable
goals given an activity). For example, inferring a goal’s probability from an action can be
estimated based on Bayes’ rule, i.e., using a prior probability of acting in this way given
a goal plus a prior probability of this goal [10]. However, how can we know about the
probability of the goals? While search strategies in standard abduction techniques are based
on “fixed” global goal probabilities, they may be unknown for a specific person. There
are also “learning” approaches which incorporate the history of explanation, for example,
based on case-based reasoning [52]. However, if goals are learned that way, then we need a
training data set,6 which may be difficult to get.

The challenge seems to be that a goal search strategy (goal probability) needs to take into
account the goal history of a person, which does not only change from one person to the next
but (for a given person) also in time. Thus, there is a need to know about higher level goals
in order to estimate which low-level intention of a user is most probable given an activity.

6Unsupervised learning, e.g. clustering, does not require training data, but leaves open what kind of goal was
detected in a set of activities.
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For example, if we know that Bob is doing workouts, then his car ride to a gym after work
has an obvious purpose. Thus, similar to our discussion about activity inference, we come to
the conclusion that we require top-down information to correctly and reliably use bottom-
up inference techniques. A complementary approach to learning about goals (as well as
about types of activities) is based on combining bottom-up techniques with top-down user
generated input. In this case, we use some form of interaction with a user to learn about his
or her past goals. For example, if Alice travels a lot between meetings, then being present
at a meeting can be inferred as a goal from her calendar, while hooking up this calendar to
measured locations and times allows intermediate travel events to be automatically added
to it [20]. Fusing calendar events with sensor events has been used by Lovett et al. [55],
in order to improve the quality of both, calendar completeness and consistency, as well
as sensor-based event detection and labeling. Results show that calendars alone are not a
reliable source for detecting meeting events, however, fusing sensor-based detection with
calendar information can be such a source.

Thus, an obvious way to address these research challenges is to combine inverse planning
with ordinary planning in a tight loop. The question is how this loop can be technically
realized (See Fig. 5)?

4.4 Transparency of the future

Influencing or changing one’s behavior is a matter of actionable knowledge. It is a matter of
how one’s own prospect on the immediate future deviates from one’s own old habits. If Bob
knew that there was a way of easily getting to a nearby gym in a colleague’s car directly
from his work place (saving him time as well as resources), then he might choose against
returning home and taking his own car to the gym, as he was used to. And similarly, if
Alice knew that while on a business trip to the U.S. the newly built airport train took her to
downtown Dallas more easily, quickly and cheaply, she would not rent a car at the airport.
The question is how we can be made aware of our future prospects and how they deviate
from our old habits, opening up a space of practical opportunities for behavior change.

4.4.1 Activity planning and computation of alternatives

Eco-feedback tools, such as [33], have primarily focused on giving feedback on past behav-
ior. The idea is that feedback lets people control their behavior without any need to reflect
on future decisions. However, we have argued in the last sections that meaningfully scoring
and evaluating behavior as well as reliably detecting behavior needs top-down information
about intentions and goals, and that a primary information source for the latter are calendars

Fig. 5 How can inverse planning
and planning be tightly
integrated?
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or other planning tools. Furthermore, feedback on past behavior is not yet actionable knowl-
edge, because it misses the part of decision support, and thus a chance of recommending
activities that change behavior.

Which kinds of mobility planning tools are available? (See also [65]):

– Web calendar services (e.g., Google calendar).
– Spatio-Temporal Personal Information Management Tools (cf. [2]).
– Mobile guides, which allow users to select tourist destinations or short trips to

surrounding places. This can involve sophisticated optimization problems [87].
– Driver assistance and navigation systems.
– Multi-modal trip planning.
– Activity planning microsimulation models (see e.g. [9])
– Ride sharing systems (cf. [58]).

Activity planning primarily involves the computation of feasible alternatives. This
includes the consideration of alternative activity types as well as alternative activity sched-
ules (temporal sequences of activities). Regarding the latter problem, one way is to use
multicriteria optimization technology (e.g., the branch-and-bound algorithm to solve linear
programs) in order to schedule sequences of activities with space time constraints (see [21]),
as envisioned by space-time geography [38]. Regarding the former problem, it is necessary
to keep a plan library of possible activities and goals which allows for substitutions of activ-
ity types. Here, one could rely on classical planning algorithms in Artificial Intelligence, see
[70]. Recent transport microsimulation approaches, such as ADAPTS [9], integrate empir-
ically tested algorithms for activity planning, destination selection and activity scheduling
into a single decision model which adapts to a particular planning situation.

However, despite the diversity of tools and solutions available, current technology still
has a number of shortcomings in order to serve as goal-aware and feedback friendly mobile
planning tools which are needed to close the various feedback loops in our model of Fig. 3:

1. Missing decision support: As Raubal [67] has argued, current tools seldomly incor-
porate personal preferences and multiple criteria (e.g., multi-criteria decision making
approaches) to select a goal or a mode of action. However, the latter is needed in order
to support activity scorings and evaluations of future activities.

2. Missing calendar integration: To date calendars are not integrated with spatial or
location aware planning tools [1, 3]. For example, when Alice plans to attend a meet-
ing overseas, she cannot schedule her flight in the calendar such that the calendar is
aware of any associated spatial constraints. Calendars do only allow integrating time
constraints into trip planning [56].

3. Missing abstract goal representation: Planning tools often have a too narrow notion
of a goal (if at all). Either it is assumed that a goal is given (trip planning, driver and
navigation assistance systems) or that a goal is simply a target location that a user
selects. A location-independent and abstract goal such as Bob’s need to perform regular
workouts cannot be taken into account. Goals can be abstract and can be reached by
different means and at different locations. One way to integrate abstract goal hierarchies
into planning are ontologies [83].

4. Missing goal inference from past behavior: Planning tools often do not make use
of learning about past habits and frequent behavior and the corresponding goals. For
example, if Bob goes to the gym frequently, he can infer his own health goal and take
it into account in planning support.
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5. Missing collaborative scheduling tools. Collaboration can broaden alternatives and
thus the possibilities of planning, as it generates new mobility options [58]. This, how-
ever, requires tools that facilitate collaboration beyond the sharing of data, and beyond
established solutions such as car sharing or couch surfing, incorporating many aspects
of daily life. Collaboration may, e.g., be embedded into calendars and may involve
activities such as running errands together or jogging together. Furthermore, it needs
a way of generating trust and privacy, because collaboration requires the sharing of
personal details.

One way to meet these requirements is based on an integrated activity calendar, which
we will sketch in our research agenda (See Section 5).

4.4.2 Activity prediction

Closely interconnecting the activity past with the future can be done by basing recommen-
dations on probable behavior as observed in the past. Predicting activities can be used to
fill empty calendar slots, to make conservative recommendations, or to deliberately deviate
from choices of the past in activity planning.

In transportation science, daily activities are commonly predicted based on logistic
regression and models of choice for the purpose of travel demand modelling [12]. We focus
here more on data driven machine learning approaches.

Predicting a user’s next activity can be modeled as a problem of reasoning under uncer-
tainty, given the user’s (most recent) activity history [54]. Activity prediction identifies
future activity candidates, assigns probabilities to them, and returns the most likely one. In
case several candidates are assigned similar probabilities we are facing a problem of ambi-
guity. For the case of mobility prediction, ambiguity occurs on several levels [49, p.6]: there
may be several locations the user will go to next, a location may belong to several places
(spatial context ambiguity), and a place may have several actions a user might plan to per-
form there (affordance ambiguity). Some application domains may have a higher intrinsic
ambiguity than others. Alices’ activities at the airport, for instance, will be more structured
(check-in, drop luggage, pass through security, etc.), and thus easier to predict, than her
freetime activities on a Saturday afternoon.

The challenge for the system designer consists in designing a prediction algorithm which
reduces ambiguity, given the domain at hand [50]. Methodologically, prediction algorithms
are closely related to recognition algorithms (see Section 4.3.1), sharing the same algorith-
mic foundations, e.g., multi-layer DBN [62] and machine learning [7]. However, activity
prediction algorithms are the more challenging problem because they always have to cope
with incomplete activity histories and offering predictions that need to be made on the spot
(time constraints). In addition, it also requires the accurate detection of previous activities
and/or goals. If an activity history on which we base the inference has been recognized with
a high uncertainty value, the result is that the uncertainty propagates to the future activ-
ity candidates, leading to higher ambiguity and incorrect predictions. It may also become
necessary to revise recognition attempts made previously.

In the most simple case, activity prediction uses a history of size 1, e.g., using a first-order
Markov model [8]. This is often very effective. For instance, if Alice is walking towards
her car on a Monday morning, we can infer that her most likely next activity will be driving
to work (based on an individual user model and a user-independent plan library). While in
principle, a larger activity history may help to reduce ambiguity, it is often unavailable [6],
or the size of the activity history needed to capture a certain activity pattern is too large to
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be modeled with formalisms that provide an efficient inference [49, pp.63ff]. For instance,
if Bob visited a public library at some point during the last 4 weeks, the likelihood of re-
visiting that library is higher than the base probability for library visits (because he needs
to return the borrowed items at some point). Making probabilistic inference on an activity
history of 4 weeks (e.g., with a DBN), however, is not feasible without the introduction
of a belief state aggregating the past before a certain point, which however may require
exponential memory for complex domains [18].

5 Conclusion and research agenda

In this paper we explored research challenges for location-aware ICT that provide users
with suggestions of sustainable activity alternatives. We structured research challenges
according to information processes that illustrate the information requirements for chang-
ing one’s behavior both from an analysis (current and past behavior) as well as a planning
(future behavior) perspective. In particular, we distinguished activity scoring (rating) and
challenges that arise during meaningful communication (through feedback) of activity alter-
natives. In addition, we talked about activity recognition, as well as goal and intention
recognition, and identified open research gaps.

In the remainder, we outline a research agenda as the summary of our literature review
(See Section 4) and related to the model we introduced in Section 3. The following subsec-
tions are ordered in terms of priority with respect to a typical design process of ICT, starting
from the definition of requirements and design principles for such a system and ending with
an empirical large-scale user evaluation. Note, in Table 1 we give an overview of our sug-
gestions for future research and the associated challenges. For better reference, we link each
suggestion with its corresponding section in our paper.

5.1 Conceptual requirements

5.1.1 Design principles for meaningful recommendations

A set of cognitively and psychologically sound design principles that can guide system
developers in choosing the appropriate use of motivational affordances (see Section 4.2.1)
for a given user context is urgently needed (cf. [88]). These principles must be grounded
in research on the psychology of motivation to increase user acceptance and the likelihood
that the system’s suggestions are actually carried out.

For example, the fact that people typically undergo different motivation stages for behav-
ior (see for example Section 4.2.2) is often not explicitly considered in the design process.
Someone who contemplates behavior change needs different forms of feedback (in type,
magnitude, and frequency) than one who is actively preparing to change (cf. [43]). In addi-
tion, people’s motivational needs [72] such as the innate needs for autonomy, competence,
and relatedness can act as guiding principles on how and what type of information is pro-
vided. For instance, systems let users define their own goals may be less patronizing than
systems that “dictate” external goals set by the system’s designer (see Section 2.3).

5.1.2 Ontologies for goal and activity representation

Because goals and activities are tightly interlinked, both causally (e.g., in order to get to the
gym, some form of transport has to be used), as well as conceptually (“working out” is an
abstraction of “going to the gym”), a way of modeling such dependencies is needed. This
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Table 1 Overview of suggestions and corresponding research challenges as discussed in this article

Agenda section Agenda suggestion Challenge Section

Conceptual Design principles Strategies f. feedback communication 4.2.1

requirement Design for motivational stages 4.2.2

Ontologies Missing abstract goal representation 4.4.1

Collaborative planning Missing collaborative scheduling

System Activity Activity Accurate, frequent, energy-efficient 4.3.1

components calendar recognition Model that capture activity domains

sensor readings

User-dependent activity model

Acquisition of training data

Integration with other knowledge

sources

Goal and intention Integration of inverse planning 4.3.2

recognition and planning

Planning Missing decision support 4.4.1

Missing calendar integration

Missing goal inference from

past behavior

Activity prediction 4.4.2

Activity scoring Score standardization 4.1.2

Score construction 4.1.3

Evaluation Empirical studies Small sample sizes 4.2.3

Lack of control group

Short time-frame

Lack of psychometric measurements

No distinction between

motivational affordances

Statistical significance

will be one requirement for using goals and activities in reasoning. The use of ontologies
and rules for representing abstract goals in planning, as well as for activity recognition
and prediction could fill this gap and enable users to specify goals on a higher level of
abstraction (cf. [35]), leaving their spatio-temporal realization in terms of activities up to
recommendation. One major challenge is to find a level of abstraction that fits well with
user specific goals and allows for the activity calendar integration (see Section 5.2.1).

5.1.3 Methods for collaborative planning

Planning tools that can automatically take into account several users, offer decision support
for multiple goals, provide calendar integration, as well as knowledge integration with past
behavior are still missing. The conceptual foundation for such a tool is an open and exten-
sible infrastructure to support both communication and matching of potential collaborators
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[16, 17, 37]. This will broaden the range of activity options, e.g. the improved access to
shared resources. In addition, it will be one way to empirically test all involved planning
conditions and the limits of cooperation towards a common goal (cf. [58, 90]).

5.2 System components

5.2.1 The integrated activity calendar

Tools that attempt to integrate personal information (e.g., to-do-lists) with spatio-temporal
information [1] are required to connect higher-level goals (e.g., intentions) with low-level
activities such as navigation. The integration of planning with inverse planning, as sketched
in Section 4.3.2, would allow a more reliable detection of (especially user-specific) types
of activities (See Section 4.3.1), as well as their specific goals and goal probabilities. The
benefit will be an external knowledge source and thus training data for the recognition of the
past, but also a reliable platform for planning support. However, it remains an open question
how both planning and inverse planning and activity detection can be technically integrated.

5.2.2 Meaningful personal activity scoring

Goals of a user and external goals both need to be taken into account in scoring a user’s
activities (see Section 4.1). This enables the development of intrinsic motivation [60, 72]
and allows to plant external goals on somebody. In addition, personal scoring of activities
relative to alternative activities is needed. The space of alternatives is then determined by
personal goals. This also motivates people to change behavior inside the boundaries of their
personal possibilities. However, how should score and criteria construction, standardization,
goal integration and score communication be carried out technically?

5.3 System evaluation

5.3.1 Empirical evaluation of behavior change

In order to make valid and reliable empirical claims on the effectiveness of technologies
that support people in a sustainable mobility life-style, it will be necessary to conduct long-
term and large-scale user studies that overcome the methodological issues mentioned in
Section 4.2.3. The design of large-scale and long-term studies are challenging but can give
valuable feedback on whether the design principles (see Section 5.1.1) initially selected led
to the intended results. It will thus be required to carry out an iterative system design in
which the design and evaluation of a system (for specific user groups in a given context) are
mutual inputs.

Large-scale and long-term empirical studies, however, will face new emerging chal-
lenges. For example, how can people be motivated to use such a system for longer periods?
What are effective mechanisms that can keep users motivated once the novelty effect of
such a system has worn off [40]? Recent studies have pointed at the long-term motivating
potential of gamification, i.e., “the use of design elements characteristic for games in non-
game contexts” ([25], p.9). Leaderboards, social comparison and peer pressure, as well as
setting objectives and goals, can influence a user’s motivation both towards using the system
and changing her behavior. Yet, similarly to the necessary design principles for information
feedback (See Section 5.1.1) it is still unclear how much potential “gamified” systems have
for the purpose of behavior change.
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In addition, tracking users over longer periods will yield very detailed and extensive
user profiles, especially if spatio-temporal information is connected to a user’s preferences
and attitudes. How can we assure the user’s right to geoprivacy [89] and, (how) do we
sufficiently address ethical concerns, if we design systems intended to change behavior?
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