
ONTOLOGY-BASED TASK SIMULATION

Martin Raubal and Werner Kuhn
Institute for Geoinformatics
University of Münster

Abstract
Information services assist people in their decision-making during the performance of
certain tasks. In order to determine if a data source, which commits to a given
ontology, can be employed for a service, the service provider needs to evaluate its
usability and utility for the decision-making process. We propose to do this by
simulating with the ontologies the tasks to be supported by the service. Such a
simulation needs to access data about entities based on the actions they afford and the
events they participate in. This requires that ontologies include information about
these affordances and events. The paper demonstrates a formalized framework, which
satisfies this requirement by including functions in the ontologies and making the
specifications executable. A real-world scenario for a navigation service—instructions
for crossing a river by car—demonstrates the applicability and benefits of the
approach in a dynamic scenario.

1. INTRODUCTION

People use information services for assistance in situations where they have to make
decisions. Consider, for example, a car navigation service, which calculates an optimal route
and provides a sequence of instructions for driving along this route. Each instruction guides
the user from one decision point to the next. Such a service uses data sources that commit, at
least implicitly, to specific application ontologies, such as a navigation ontology, which may
themselves commit to a domain or upper-level ontology (Kuhn & Raubal, 2003). Instructions
should communicate to the user what she can do in a decision situation, i.e., the service needs
to know about the roles that entities (represented by the data) play in actions (Fonseca,
Egenhofer, Davis, & Câmara, 2002). Current ontologies are static and entity-based and do not
specify these actions. Their emphasis is on attributes and relationships rather than operations
(Kuhn, 2001). The importance of action-oriented approaches in GIScience was recently
highlighted by an international research workshop1.

The omission of actions and their context-dependent semantics from ontologies can lead
to counterproductive assistance when using a navigation service. A German motorist
experienced this when he drove his car into a river after following instructions from its
navigation service (Hamburger-Abendblatt, 1998; McKie, 1998; Neumann, 1999). The
system implied the presence of a bridge when it should have indicated a ferry. Although both
bridge and ferry are links that afford river crossing to cars, the semantics of this action is
crucially different depending on which entity it is applied to. Bridges are static and therefore
continuously afford crossing. Ferry lines have a dynamic component and can only be used by
a car when the car gets on the ferry. The accident of the motorist would not have occurred had
the underlying ontology included such dynamic aspects.

This paper presents a method to evaluate whether data committing to a particular
application ontology can be usefully employed by an information service. The core idea is to
simulate with the ontology the specific tasks to be supported by the service. This idea of
ontology simulation is new and represents the main contribution of the paper. Such a
simulation requires first that the ontology comprises not only entities, relationships, and
attributes, but also actions, because these will be referred to in the simulations. Secondly, the
actions need to be specified in an executable form, to enable the simulation without the need
for further programming. The formalized2 approach shown here satisfies both requirements. It
uses a functional specification (Frank & Kuhn, 1999), where ontologies are specified
algebraically, and simulations are run in their initial model (Goguen, Thatcher, & Wagner,
1978).

Section 2 describes in more detail the case study of crossing rivers that we use to
demonstrate the need for and applicability of the method. In section 3 we review previous
work on ontologies for information systems from a dynamic point of view, and describe the
general ideas behind ontology-based task simulation. Section 4 discusses the two main
requirements ontologies need to satisfy in order to be used for task simulation, i.e., action
specification and executability. It further introduces our formalization method, fulfilling these
requirements. The formalized framework is applied to the case study in section 5 by
simulating the task of crossing a river by car based on two different versions of an application
ontology. The final section presents conclusions and directions for future research.

1 http://www.spatial.maine.edu/~actor2002/
2 In the sense of expressed in a formal language.

2. CASE STUDY – CAR NAVIGATION SERVICE

In order to demonstrate the proposed method for evaluating data sources through simulations
in their ontologies, we use the real-world example from the introduction. It illustrates the kind
of situation in which an evaluation is needed.

2.1 Car navigation services

A car navigation service is a special case of a location-based service. Its main task is to guide
a driver from a starting point to a destination by calculating an optimal route and giving
instructions for driving along this route. Traditional car navigation systems (White, 1991)
integrate a positioning system, car sensors, and a local copy of the map data. Their derived
turn-by-turn instructions have two major drawbacks: they are often based on out-of-date data
and do not consider real-time traffic information. Car navigation services delivered via
wireless communication networks solve these problems by including access to real-time
traffic information and detailed up-to-date mapping data (Coleman, 2001).

Digital map data for navigation is complex and includes multiple aspects of road
networks. The geometry of the street network is needed for comparing and matching the car’s
path with the street locations in the database. Topological information is used as input to
optimal path algorithms. Data producers have handled these aspects successfully and data
standards for describing road networks and transferring the data have been developed, such as
the international standard GDF (Geographic Data File) (Konijn, 1998). These standards
typically focus on the relevant geographic entities, their attributes, and relationships, but do
not relate them directly to actions and related decisions that the data can support. In this paper
we argue that the specification of real-world actions in which the features participate is an
essential requirement for assessing data usability (Riedemann & Timm, 2003) and therefore
needs to be represented explicitly. The case study from the navigation sector is used to
demonstrate why and how.

2.2 Background of the case study

On December 25, 1998, a German motorist drove his car into the Havel river near Caputh in
eastern Germany, after following instructions from its navigation system. A ferry operates
across the river at that point, but the system was unaware of the crucial difference between
crossing a river on a ferry and on a bridge (Hamburger-Abendblatt, 1998; McKie, 1998;
Neumann, 1999).

While one can muse about non-technical factors leading to the accident, we hypothesize
that the core problem was one of semantics: When calculating a route, ferry lines and bridges
are treated equally, as parts of the road network. When giving instructions, however, the
different semantics of moving across the river need to be taken into account. A bridge can
typically be crossed at any time, while a ferry operates at certain times only, and the driver
should be instructed to wait for the next crossing.

It has proven practically impossible to obtain specifics about the data and software that
were used in that car. However, the fact that navigation systems use road data for at least two
purposes, calculating routes and giving instructions, is undisputed (Timpf, Volta, Pollock, &
Egenhofer, 1992). The software modules responsible for driving instructions assume that a
link in a road network affords driving. If road data supporting route calculation (and treating
ferry lines as regular parts of the network) are used to produce driving instructions, motorists
will be guided into the water. This reasoning underlies our hypothesis about the semantic

causes involved in the accident. We cannot prove this, but use it as an assumption for the sake
of our argument: action semantics is key to assessing data usability.

One kind of such road data is that following the GDF standard (Konijn, 1998). This
standard adheres to a sophisticated semantic model of road data, differentiating three levels
(see section 5 for details). It is the responsibility of the software producers to match these
levels to the tasks supported by their systems. A mismatch between the two ontologies (both
implicit, of the data and of the software) creates a potential semantic problem.

Note that this is not an issue of incorrect data or software. It is one of a mismatch
between the semantics of the two. The case appears to demonstrate the danger of separating
data from the software that „knows“ about their semantics. Most of today’s navigation
systems use a traditional data exchange architecture: data are digitized from maps and
delivered (for instance, on commercially available CDs) to software systems that make certain
assumptions about their meaning. Splitting the data from the operations lets semantics fall
between the cracks.

In an object-oriented service architecture, where data are only accessed by the operations
they support, such semantic problems are in principle less likely. They only occur, if the
semantics of the (correctly operating) service are not available to the user. Standards for
interoperability like those of the OpenGIS Consortium3 represent a first step in this direction,
though they cannot yet solve the issue of service semantics. Indeed, the current deviation from
service interoperability by so-called “data interoperability” based on mark-up languages that
separate data from operations further delays a solution. The architecture of today’s navigation
systems, however, dates from a previous generation and can cause problems wherever the
semantics varies from one context to another.

3. ONTOLOGIES AND SIMULATION

This section describes the current use of static ontologies for information systems, with its
limitations from a dynamic point of view, and presents the idea of ontology-based task
simulation.

3.1 Ontologies for information systems

In the traditional sense, ontology is a subfield of philosophy and can be defined as the science
of existence. It tries to determine “the various types and categories of objects4 and relations in
all realms of being” (Smith, 2001, p. 79). From an information systems and artificial
intelligence perspective, ontologies are content theories identifying specific classes of objects
and relations that exist in some domain (Chandrasekaran, Josephson, & Benjamins, 1999;
Frank, forthcoming). Ontologies in the latter sense are language-dependent. Guarino (1998)
distinguishes between Ontology in philosophy and ontologies in knowledge engineering. This
paper focuses on ontologies for information systems.

Gruber (1993) defines an ontology as “an explicit specification of a conceptualization.”
Ontology designers have to make explicit choices of what to admit as referents in a particular
system or language. According to their level of generality, different kinds of ontologies for
information systems exist (Guarino, 1998):

1. Top-level ontologies describe general concepts, such as space and time, independent
from a particular domain.

3 http://www.opengis.org
4 Like this and other sources, we use the terms „object“ and „entity“ interchangeably, where there is no danger
of confusion between entities in the real world and their representation as objects in a database.

2. Domain and task ontologies include the vocabulary for a generic domain (e.g.,
geospatial) or task (e.g., moving).

3. Application ontologies represent concepts, which depend both on a particular domain
and task. They are often specializations of domain and task ontologies.

In order to be used in information systems, ontologies need to be formalized and
machine-readable. Formal ontological theories include definitions of terms and sets of axioms
(Smith, 2002). The current practice of formalizing ontologies uses various subsets and
extensions of first-order logic (Welty & Smith, 2001). Examples are the IEEE’s Standard
Upper Ontology (IEEE, 2003), which is developed with KIF (Genesereth & Fikes, 1992);
GOL (Degen, Heller, & Herre, 2002), a framework for ontological engineering, and
ONTOCLEAN (Guarino & Welty, 2002), a methodology for ontological analysis based on
description logic. The formalized theories emphasize entities with attributes and relationships
over processes, actions, and operations. Reasons include (Kuhn, 2001):

• an emphasis on attributes and relationships rather than operations in object-oriented
design methods;

• the weakness of logic-based formal languages in dealing with operations and their
semantics;

• the lack of understanding how natural language represents actions—witness the
noun-bias in WordNet and its theory (Fellbaum, 1998);

• a general lack of theories of function (Barsalou, Sloman, & Chaigneau, forthcoming).
Even if actions are specified in ontologies, the first-order logic formalisms allow only for pre-
and post-conditions to be stated, preventing simulations. Supporting human beings in
geographic space requires ontologies that are developed paying full attention to both, entities
and actions. We have previously suggested (Kuhn, 2001) that the tasks (or actions) to be
supported by a Geographic Information System (GIS) should even determine the entities that
are captured in an ontology.

In this paper, we are less interested in putting labels on various kinds of ontologies than
in the purposes that the ontologies serve. The support for simulating tasks that we request may
be seen to belong to task or application ontologies (or to yet another kind). However, we
avoid further contributions to the inflation of kinds of ontologies and simply suggest that an
ontological description of an application needs to be able to answer questions about the tasks
that can be performed in it.

3.2 Ontology-driven simulation

Simulation techniques are being widely used in scientific study and many other fields. The
Oxford English Dictionary5 defines simulation as “the technique of imitating the behaviour of
some situation or process (whether economic, military, mechanical, etc.) by means of a
suitably analogous situation or apparatus, esp. for the purpose of study or personnel training.”

For economic and ethical purposes it is often useful and necessary to test people’s
interactions with systems before employing them in the real world. Tests show how systems
work under various conditions and with different participants. Pilots, for example, perform
extensive tests on flight simulators before flying a real aircraft. Despite this practical aspect,
simulation of human behavior in space is a powerful research method to advance our
understanding of the interaction between people and their environment. It allows for both the
examination and testing of models and their underlying theory as well as the observation of
the system’s behavior (Frank, Bittner, & Raubal, 2001; Gimblett, Durnota, & Itami, 1997;

5 http://www.oed.com/

Raubal, 2001b). In the geographical sciences this has led to the emerging field of
geosimulation research6, mainly for the study and planning of urban systems.

Simulations imitate processes in certain domains. In order to achieve useful results, a
simulation has to be based on a consistent ontology, which represents plausible specifications
of the application concepts. Ontologies are also needed for the integration of information from
different applications or domains. Various simulations require the combination of higher-level
and domain- or task-specific concepts. This can be done by relating top-level, domain, task,
and application ontologies. In line with Fonseca’s (2002) term of “Ontology-Driven
Information Systems” we can speak in this case of Ontology-Driven Simulation.

Information services are provided by systems, which are based, implicitly or explicitly,
on some application ontology. The services assist people in their decision-making in the real
world. It is necessary to test their designs to avoid negative consequences for their potential
users. Testing the service and its data source starts with testing the underlying ontology, i.e.,
the ontology that the data source commits to. If the data have the wrong semantics, services
built on them will most likely fail to support their users appropriately. We propose to do such
ontology testing by simulating with the ontology the tasks to be supported by the service.

One could argue that the use for simulation purposes is a different concern from that of
the specification of application concepts, and that it should not influence the form or contents
of ontologies. However, we posit that the possible uses of data are a key aspect of the
semantics that an information system ontology should define. The data uses are directly
linked to the possible uses of entities in human actions (e.g., moving a car across a river).
They should therefore be part of ontological specifications, rather than a special kind of
application built on top of ontologies. Our method will show that ontologies and task
simulations can indeed be produced in the same language and in one pass.

4. REQUIREMENTS FOR SIMULATING TASKS WITH ONTOLOGIES

Two key requirements ensue from the premise that ontologies should support task simulation.
One is the possibility to include actions in the ontologies. The other is to make these action
specifications testable, in the sense of letting their designers and users observe the effects they
have on entities, attributes, and relationships. This section discusses the two requirements in
detail and introduces our method of formalization.

4.1 Ontologies with actions

The first major requirement for simulating a task using an ontology is that the ontology
describes sets of actions, in which its entities can participate. A task can be defined as a
process within a specific time frame. A process is “a particular course of action intended to
achieve a result” (WordNet7). If an ontology is used for simulating courses of action, then it
must include the semantics of these actions. Sections 5.2 and 5.3 will present examples from
our domain ontology, which demonstrate how action-based ontologies could look.

Current ontology representation frameworks lack satisfactory ways of specifying actions
(Mota, Bento, & Botelho, 2002). Cases for action-driven ontologies have been made by
(Camara, Monteiro, Paiva, & de Souza, 2000) and (Kuhn, 2001) for geographical space. Their
arguments for a dynamical perspective were that geographic entities are continuously being
transformed and new ones created, and that the use of information about them is tied to
human activities. For information services it is of particular importance what the entities can

6 http://www.geosimulation.org/
7 http://www.cogsci.princeton.edu/~wn/

be used for, i.e., what kind of action can the user perform with an entity? In general,
information services offer pragmatic information to assist the user in the decision to perform a
particular action. The usefulness of such information for a given task and context can be
measured by the result after an action has been taken (Frank, 2003).

The things that people distinguish in the world depend on the actions they afford. We
have previously proposed to enrich ontologies with affordances (Kuhn, 2001; Raubal, 2001b)
to compensate for their failure to integrate actions into domain theories. Affordances describe
possibilities for actions with reference to a user (Gibson, 1979). Here, we focus on physical
affordances (Raubal, 2001b), which require bundles of physical properties that match the
agent’s properties and capabilities. Similar to (Kuhn, 2001) we adopt a broad sense of the
term agent: for example, we consider a road to afford driving to a human being in a car. A
more restrictive use might see the road as affording support for a car and the car as affording
driving actions.

4.2 Executable specifications

The second major requirement for ontology-driven task simulation is that the actions in the
ontology are testable. Current ontologies are mostly described in static formalisms and do not
allow dynamic testing, i.e., the process of viewing an initial situation (state), performing an
operation, and then viewing the resulting situation (state). An example is WordNet (Fellbaum,
1998), an online lexical reference system, which is a top-down categorization including
nouns, verbs, adjectives, and adverbs. It gives definitions of terms and places them in a
hierarchy, but it is not formalized and therefore not testable. Many other efforts to produce
ontologies use formal tools—mainly based on first-order logic—and cannot be dynamically
tested (in the sense described above). Examples are KIF (Genesereth & Fikes, 1992),
Ontolingua (Gruber, 1992), and KADS (Schreiber, Wielinga, de Hoog, Akkermans, & van de
Velde, 1994). How such dynamic testing can be done is shown in section 5.4.

In the area of geographic information, the Open GIS Consortium (Kottman, 1999) is
developing formal software specifications, which can be seen as ontologies. One of their
products is the Geography Markup Language (GML)8, an XML encoding for the transport
and storage of geographic information. It is used to describe data and relationships between
components. Features are described as lists of properties. For example, a road might be
defined to have a name, a surface-construction, a destination, and a centerline. These
properties can be modeled in UML (Booch, Rumbaugh, & Jacobson, 1999) as attributes of the
feature class (Figure 1). Besides missing information on what a road can be used for and by
which agent, i.e., the lack of specified actions, UML is only semi-formal (Winter & Nittel,
forthcoming) and static and can therefore not be used for testing.

8 http://www.opengis.org/techno/specs/02-009/GML2-11.html

-name : String
-surface : surfaceCode

Road
Geometry

LineString

Town

Feature

-centerLine

-destination

Figure 1: Representation of Road in UML (redrawn from http://www.opengis.org/techno/specs/02-
009/GML2-11.html).

4.3 Formalization

Our method of ontology formalization uses algebraic specifications, which present a natural
way of representing actions. Algebraic specifications have proven useful for specifying data
abstractions for spatial and temporal domains (Car & Frank, 1995; Frank, 2000; Kuhn, 1996;
Raubal, 2001a; Winter & Nittel, forthcoming). Data abstractions are based on abstract data
types, which are representation-independent formal definitions of all operations of a data type
(Guttag, Horowitz, & Musser, 1978). Algebraic specifications describe objects (or entities) in
terms of their operations (or actions). They do not express what the objects are, but how they
behave.

Algebraic specifications can also be used for testing at design time. Specifications for a
software system can be tested before committing to build the system. This is exactly what is
needed to fulfill our second requirement: tasks to be supported by a service need to be tested
at design time, using the ontology of the data source. Algebraic specifications written in an
executable programming language can be tested as a prototype of the service (Frank & Kuhn,
1995).

The tool chosen here is Hugs, a dialect of the functional language Haskell (Hudak, 2000),
which includes the additional capabilities necessary for ontological engineering in our sense
(Kuhn, 2001), namely the representation of

• types: ontologies draw distinctions between types of objects;
• type classes: types are characterized through collections of types, i.e., type classes,

for which common functions are defined;
• algebraic axioms: the meaning of an action is expressed through algebraic axioms; a

set of axioms is a set of rules that describes the effects of an operation in terms of
other operations on the same or on simpler types;

Haskell is a purely functional language and provides typing as well as higher-order
capabilities. In a nutshell, the necessary constructs for our case study formalization are the
following:

• algebraic data types: data Car = Car Name Position
(introducing a user-defined type),

• type synonyms: type Position = [Int], type Name = String
(calling a pre-defined type differently),

• type classes: class Named n where name :: n -> Name
(collecting types sharing the specified behavior),

• instances: instance Named Car where name (Car n p) = n
(inheriting the class behavior to a type).

Haskell can be seen as an executable ontology development and testing environment (Kuhn &
Raubal, 2003). One of its major strengths is strong typing. It means that every object has a
particular type and the compiler checks that operations can only be applied to certain types.
This results in strongly typed ontologies, which allow for avoiding wrong assumptions, i.e.,
specifying incompatible types for operations. The following section shows how its Hugs
dialect is used for this purpose in practice.

5. ONTOLOGY SIMULATION FOR A CAR NAVIGATION SERVICE

The formalization method is now applied to the case study introduced in section 2. We first
present the GDF data model and the relevant data types. Next, the necessary concepts from an
experimental domain ontology are introduced. The GDF data types are then related to the
behavior specified for the concepts in the domain ontology. The resulting specifications can
be executed and therefore used for simulating tasks to be supported by the navigation service.
The simulation explains the ontology mismatch that presumably occurred in the case study.

5.1 GDF9 application model

The overall data model of GDF consists of feature themes, feature classes, features, complex
features, attributes, and relations (ISO, 2001). All objects are conceptually divided into three
different levels. Level 0 is concerned with the topology and defines the basic graph-theoretical
building blocks: nodes, edges, and faces. Simple features are represented on level 1, whereas
complex features, i.e., aggregates of simple features, are represented on level 2. The basic
building blocks of simple features are stored on level 0, while complex features are defined
with simple or other complex features. Attributes are characteristics of features, which are
independent of other features. Relations are meaningful links between two or more features.
Each feature belongs to exactly one feature class and one feature theme.

The case study is concerned with the objects Node and Edge and the simple features Road
element and Ferry connection representing the road network at levels 0 and 1 respectively.
Figure 2 shows parts of the data model for the level 0. Figure 3 illustrates parts of the data
model for levels 1 and 2 with respect to Roads and Ferries. Level 1 consists of the simple
features Road element and Ferry connection and some of their attributes. These get
aggregated to the complex features Road and Ferry at level 2. Definitions for the objects and
features are given in Table 1.

9 Let us reiterate that our choice of the GDF data model to demonstrate the need for ontology-driven simulation
does not imply that GDF actually played a role in the reported accident.

TOPOLOGICAL
LINE FEATURE

TOPOLOGICAL
POINT FEATURE

TOPOLOGICAL
AREA FEATURE

NODE
[ID]

EDGE
[ID]

FACE
[ID]

is repre-
sented by

represents

is repre-
sented by

represents

is repre-
sented by

represents

bounds starts at
ends at

bounds starts at
ends at

left bounds
right bounds

is bounded
by

is bounded
by

left bounds
right bounds

Figure 2: Extract of the GDF data model level 0 based on (ISO, 2001).

Level 2

Level 1

Road
Element

Junction
Ferry

Connectionbounds starts at
ends at

starts at
ends at bounds

Road

contains
is part of

Ferry

contains
is part of

has
of

length

has
of

speed
restrictions

has
of

positional
accuracy

has
of

travel
time

has
of

frequency of traffic
connection

has
of

max. height
allowed

Figure 3: Part of the GDF data model level 1 and 2 for Roads and Ferries based on (ISO, 2001).

Object / Feature Definition
Node A zero-dimensional element that is a topological junction of two or

more Edges, or an end point of an Edge.
Edge A directed sequence of non-intersecting line segments with Nodes

at each end.
Road element A linear section of the earth, which is designed for or the result of

vehicular movement. It serves as the smallest unit of the road
network at Level 1 that is independent and having a Junction at
each end.

Ferry connection A vehicle transport facility between two fixed locations on the road
network, which uses a prescribed mode of transport, for example,
ship or train.

Road A Level 2 Feature composed of one, many, or no Road elements
and joining two Intersections. It serves as the smallest independent
unit of a road network at Level 2.

Ferry A set of Ferry connections that describe a passage of a particular
ferry line.

Table 1: GDF definitions for Node, Edge, Road element, Ferry connection, Road, and Ferry (ISO,
2001).

The objects in this application model, which are relevant for the case study shall now be
represented as Hugs data types, together with their attributes: nodes with a name, edges with
two nodes, and road elements and ferry connections with an edge as attribute.

data Node = Node Name

data Edge = Edge Node Node

data RoadElement = RoadElement Edge

data FerryConnection = FerryConnection Edge

In addition, we define the necessary agents. These are cars (each car with a node as location
attribute, the plural cars as lists of individual cars) and the car ferry, with the carried cars and
a locating node as attributes:

data Car = Car Node

type Cars = [Car]

data CarFerry = CarFerry Cars Node

This completes the definition of the data types in our GDF application model. No axioms for
these types have been defined yet. They will result from tying the data types to the domain
ontology in section 5.3.

5.2 Domain ontology

A domain ontology serves as a semantic reference frame (Kuhn, 2003; Kuhn & Raubal, 2003)
for the terms of data models in a domain. It represents the conceptualization underlying the
use of the data model’s terms and provides a generic structure that can be employed for
semantic reference in multiple applications. Here, we specify only the geospatial domain
concepts to be used in the case study. They are part of a generic geospatial domain ontology
currently under development.

Two important basic concepts are naming and location. Objects have names (or other
identifiers) and can be compared for equality using these names. Two objects are considered

equal (identical) if they have the same identifier. The type of a name depends on the type of
the object, which gets expressed as a so-called type dependency (object -> name).

class Named object name | object -> name where

 name :: object -> name

instance (Eq name, Named object name) => Eq object where

 object1 == object2 = (name object1) == (name object2)

Objects also have locations (possibly of several different types):
class LocatedAt object location where

 location :: object -> location

The following four categories correspond to basic cognitive patterns called image
schemata. It has been proposed that meaning involves image-schematic structures
(Gärdenfors, 2000; Johnson, 1987). Image schemata fall between abstract propositional
structures and concrete images. They are developed through bodily experiences and influence
our reasoning through the recurrence of form and function. An image schema can be seen as a
generic, maybe universal, and abstract structure that helps people establish a connection
between different experiences that have this same recurring structure. Previous formalized
representations of image schemata consist of algebraic definitions (Frank & Raubal, 1999;
Kuhn & Frank, 1991; Rodríguez & Egenhofer, 1997) and predicates (Raubal, Egenhofer,
Pfoser, & Tryfona, 1997). Without attempting a cognitive, psychological, or linguistic
validation, we have found image schemata to provide excellent candidates for geospatial
domain concepts. The case for this choice will be made elsewhere. Here it should suffice to
see the core role of image-schematic operators in defining the semantics of actions in
navigation.

Links connect two objects of the same type, with the object type being determined by the
link type. The link schema introduces operations to ask for each end of the link and, given one
end, for the other.

class Link link object | link -> object where

 from, to :: link -> object

 other :: Eq object => link -> object -> object

 other link object | object == from link = to link

 | object == to link = from link

 | otherwise = error "not linked"

The Path schema allows us to express the behavior of moving: an object moves from one
end of the path to the other end.

class Path path object where

 move :: path -> object -> object

The Surface schema is specified through behavior that one commonly associates with
support. One can put objects on surfaces and take them off again and one can check whether a
specific object is on a surface:

class Surface surface object where

 putOn :: object -> surface -> surface

 takeOff :: object -> surface -> surface

 isOn :: object -> surface -> Bool

A collection of individual objects is represented through the Collection schema. Here, we
specify the special case of collections of homogeneous type elements (with the collection type
determining the element type and being determined by it). Collections can be empty, one can
add or remove an element, one can ask whether a specific element is in a collection, and one
can apply a modifying operation to all elements.

class Collection collection single | collection -> single,

 single -> collection where

 empty :: collection

 addOne :: single -> collection -> collection

 remove :: single -> collection -> collection

 element :: single -> collection -> Bool

 doToAll :: (single -> single) -> collection -> collection

The concepts of links, paths, surfaces, and collections are sufficient for the purpose of
anchoring our case study application ontology in a (otherwise rudimentary) domain ontology.

5.3 Application Ontology

We now specify the concepts, which the GDF data model uses in terms of the domain
ontology given in the previous sub-section, producing an application ontology for GDF
navigation. First, we assign nodes to the class of named objects. This expresses that each node
can be asked for its name, using the name function:

instance Named Node Name where name (Node n) = n

Then, edges are declared to be links between nodes. Note that, so far, edges had only been
given two node attributes, without any semantics for these attributes. Now, edges are being
subjected to the two functions that explain these as the “from” and “to” nodes:

instance Link Edge Node where

 from (Edge node1 node2) = node1

 to (Edge node1 node2) = node2

Next, cars and car ferries are stated to be objects located at nodes. Again, each of them only
had a node attribute in the data model—here it is explained what that attribute means:

instance LocatedAt Car Node where

 location (Car node) = node

instance LocatedAt CarFerry Node where

 location (CarFerry cars node) = node

Next, we say that car ferries act as surfaces, carrying a collection of cars:
instance Surface CarFerry Car where

 putOn car (CarFerry cars node) = if (location car == node)

 then CarFerry (addOne car cars) node

 else error "Car and CarFerry are not at same location"

 takeOff car (CarFerry cars node) = CarFerry (remove car cars) node

 isOn car (CarFerry cars node) = element car cars

Car ferries can carry 0, 1, or many cars. This behavior is captured by the Collection class
in the domain ontology. The data type Cars is, thus, declared to be an instance of this class.
The behavior is the same as that of a list and the specification uses the Hugs List functions:

instance Collection Cars Car where

 empty = []

 addOne car cars = car:cars

 remove car cars = delete car cars

 element car cars = elem car cars

 doToAll f cars = map f cars

CarFerries are also conveyances for the cars they carry. This means that they can
transport the cars across ferry connections (note the difference between the behaviors of move
and transport!). The concept of Conveyance blends the domain concepts Path and Surface
into the combined transport behavior.

class (Path path conveyance, Surface conveyance object) =>

 Conveyance conveyance path object where

 transport :: path -> conveyance -> object -> object

instance Conveyance CarFerry FerryConnection Car where

 transport (FerryConnection edge) carFerry (Car node) =

 Car (other edge node)

Proceeding with the explanation of the GDF data types, we need to explain road elements
and ferry connections (both from level 1). To begin with, they have the same behavior as an
edge, linking two nodes in the navigation network:

instance Link RoadElement Node where

 from (RoadElement edge) = from edge

 to (RoadElement edge) = to edge

instance Link FerryConnection Node where

 from (FerryConnection edge) = from edge

 to (FerryConnection edge) = to edge

In addition to the link behavior, road elements and ferry connections act as paths, but of two
different kinds: Road elements are paths affording a car to move,

instance Path RoadElement Car where

 move (RoadElement edge) (Car node) = Car (other edge node)

while ferry connections are paths for car ferries:
instance Path FerryConnection CarFerry where

 move (FerryConnection edge) (CarFerry cars node) =

 CarFerry (doToAll (transport (FerryConnection edge)

 (CarFerry cars node)) cars) (other edge node)

Note that the move operation for ferries needs to make sure that all cars are transported with
the ferry (which it does through the doToAll function from the Collection class).

This completes the formalized explanation of the navigation concepts in our case study.
All terms in the GDF data model have now been committed to the domain ontology of section
5.2 and thereby given meaning. This lays the ground for simulating activities such as driving
on roads or crossing a river on a ferry.

5.4 Simulation and Hypothesis Testing

The application ontology in the previous sub-section provides more than a static definition of
navigation concepts. Its axioms are executable specifications of the actions occurring in
navigation tasks of cars and ferries. Thus, they can be used to simulate these tasks, as we will
now demonstrate.

Let us first introduce some names used in the simulations. Two nodes, called “start” and
“end”, are linked by “theEdge” and an individual car, “theCar”, is located at the start node:

start = Node "start"

end = Node "end"

theEdge = Edge start end

theCar = Car start

The edge can serve, alternatively, as a road element or a ferry connection:
theRoadElement = RoadElement theEdge

theFerryConnection = FerryConnection theEdge

Finally, various states of the car ferry (empty, loaded, and moved across the ferry connection)
are defined:

emptyCarFerry = CarFerry empty start

loadedCarFerry = putOn theCar emptyCarFerry

movedCarFerry = move theFerryConnection loadedCarFerry

It is now straightforward to simulate the task of moving a car over a road element. We
formulate this as a test, t1, whether the car is located at the end of the road element after
moving over it. The value of t1 has to evaluate to “True”:

t1 = location (move theRoadElement theCar) == end

Similarly, t2 tests whether moving the loaded ferry over the ferry connection gets it to the end
node:

t2 = location (move theFerryConnection loadedCarFerry) == end

And t3 tests the more interesting question whether the car is at the end of the ferry connection
after being transported on the ferry:

t3 = location (transport theFerryConnection loadedCarFerry

 theCar) == end

It turns out that, with the behavior specified in the application ontology, all these tests
evaluate to “True.” However, the simulation of a car moving over a ferry connection (rather
than a road element) fails. The following statement is rejected by the Hugs interpreter,
because ferry connections have been defined as paths for ferries, not for cars:

* move theFerryConnection theCar

Similarly, it is not possible to move the car along the edge:
* move theEdge theCar

The results of these simulations confirm the behavior expected from cars, roads, and car
ferries. So, what might have gone wrong in the accident? A likely possibility is that the
navigation system used correct navigation data, but confused level 0 and level 1. To test this
hypothesis, we need to define just one additional axiom, expressing the interpretation of level
0 edges as paths for cars (no matter whether they represent road elements or ferry
connections):

instance Path Edge Car where

 move edge (Car node) = Car (other edge node)

With this axiom added to the application ontology, a test whether the car can move along the
edge evaluates to “True”:

t = location (move theEdge theCar) == end

This interpretation applied by the navigation system is suitable for calculating routes, but not
refined enough for giving instructions to a driver. While we do not know what has caused the
accident on which our case study is based, the simulation demonstrates how such a hypothesis
about an ontological mismatch between the data and the navigation system can be tested.

6. CONCLUSIONS AND FUTURE WORK

We presented the idea of ontology-based task simulation as a method for evaluating the
usability of a data source for an information service supporting human activities. We
identified two key requirements for ontologies to support the simulation of tasks: actions must
be represented and testable in the ontologies. Current ontologies rarely include actions and
are mainly formalized in a static way. We propose dynamic ontologies, consisting of a
domain ontology that includes processes, and application ontologies explaining concepts in
terms of the interaction between actions and entities. The application ontologies contain
executable specifications of actions. The functional language Haskell was chosen as a tool for
ontology design because it offers the required capabilities.

 The method was demonstrated through a real-world scenario for a navigation service—
instructions for crossing a river by car. We first specified the relevant data types from a

navigation model. Next, a domain ontology consisting of image-schematic concepts was
introduced as a semantic reference frame. The data types were then related to the domain
ontology in order to assign meaning to them. The resulting executable specifications of the
actions occurring in navigation tasks were used for the task simulation10. This simulation
demonstrated how an ontological mismatch between the data source and the navigation
system can be discovered. Such simulations can therefore help a service provider to determine
whether a data source can be employed by a service. In cases where it is intended that a
service uses more than one data source with different semantics, each of the data sources
needs to be wrapped separately into the domain ontology. This again results in sets of
executable specifications, which can be used for simulation.

Although the workload for a service provider to perform such simulations can be high, it
seems to be the only comprehensive and reliable method to check whether a data source can
be used by a service. In any case, one needs to specify the appropriate actions for the data set
in order to evaluate whether they fit for the tasks to be supported by the service. Even then,
having a designer acquire the data first and then look through the data set to see what could go
wrong with it when used for a particular purpose is too expensive, error-prone and will most
likely omit some important and special cases.

The work presented here suggests many questions and directions for future research:
1. The simulation of tasks in various (geospatial) information services requires the

establishment of an extensive geospatial domain ontology. Our idea of using image-
schematic concepts as elements of a domain ontology seems plausible and useful. It
is currently being further explored.

2. The specifications of actions in the domain ontology can be seen as defining
mediator functions for data. Thus, this special form of ontologies would deliver
testable mediator specifications at the same time. Tests with this approach to data
wrapping and mediating have been performed already [Gerding, forthcoming #873]
and are currently being expanded. It appears that the tight connection between the
software-engineering notion of mediating between information resources and the
dynamic aspects of ontologies has not yet been exploited in theory or practice.

3. The question of whether the method of ontology-based simulation and the tool can be
efficiently used for evaluating data usability in more complex geospatial applications
and scenarios can only be answered through more extensive case studies. We are
currently undertaking several such studies in the areas of environmental planning and
emergency management (http://musil.uni-muenster.de). These studies include the
generalization of the approach to service chains and semantic translation.

4. As a long-term goal, ontology-based simulation could be used as part of the semantic
web to automatically evaluate the usability of different data sets for a given web
service. For example, car drivers could log on to web-based car navigation services
via a wireless connection and depending on the context (e.g., driver’s task and car’s
position) relevant data sources for the service could be found in real time and ranked
by their suitability.

5. The idea of simulating tasks is also part of the bigger picture of testable ontologies.
Shifting the focus from user needs to designers, the issue whether and how
ontologies can be tested at design time is of growing importance.

10 The complete Hugs code for this paper is available (possibly in updated form) from the Experiments section
of http://musil.uni-muenster.de. Hugs interpreters can be downloaded freely from http://www.haskell.org.

7. REFERENCES

Barsalou, L., Sloman, S., & Chaigneau, S. (forthcoming). The HIPE Theory of Function. In L.
Carlson & E. van der Zee (Eds.), Representing functional features for language and
space: Insights from perception, categorization and development. New York: Oxford
University Press.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language Reference
Manual. Reading: Addison-Wesley.

Camara, G., Monteiro, A., Paiva, J., & de Souza, R. (2000). Action-Driven Ontologies of the
Geographical Space: Beyond the Field-Object Debate. In A. Caschetta (Ed.),
GIScience 2000 (pp. 52-54). Savannah, Georgia, USA: University of California
Regents.

Car, A., & Frank, A. (1995). Formalization of Conceptual Models for GIS using Gofer.
Computers, Environment, and Urban Systems, 19(2), 89-98.

Chandrasekaran, B., Josephson, J., & Benjamins, R. (1999). What Are Ontologies, and Why
Do We Need Them? IEEE Intelligent Systems(1), 20-26.

Coleman, M. (2001). Turn-by-turn Car Navigation. GeoInformatics, 4, 20-21.
Degen, W., Heller, B., & Herre, H. (2002). GOL: A Framework for Building and

Representing Ontologies. In B. Heller & H. Herre & B. Smith (Eds.), Ontological
Spring - A Reader in Formal and Applied Ontology (pp. 182-203). Leipzig: IFOMIS.

Fellbaum, C. (1998). A Semantic Network of English Verbs. In C. Fellbaum (Ed.), WordNet -
An Electronic Lexical Database (pp. 69-104): The MIT Press.

Fonseca, F., Egenhofer, M., Davis, C., & Câmara, G. (2002). Semantic Granularity in
Ontology-Driven Geographic Information Systems. Annals of Mathematics and
Artificial Intelligence, 36(1-2), 121-151.

Frank, A. (2000). Spatial Communication with Maps: Defining the Correctness of Maps
Using a Multi-Agent Simulation. In C. Freksa & W. Brauer & C. Habel & K. Wender
(Eds.), Spatial Cognition II - Integrating Abstract Theories, Empirical Studies, Formal
Methods, and Practical Applications (Vol. 1849, pp. 80-99). Berlin, Heidelberg,
Germany: Springer.

Frank, A. (2003). Pragmatic Information Content: How to Measure the Information in a Route
Description. In M. Duckham & M. Goodchild & M. Worboys (Eds.), Foundations of
Geographic Information Science (pp. 47-68). London, U.K.: Taylor & Francis.

Frank, A. (forthcoming). Ontology for Spatio-Temporal Databases. In T. Sellis (Ed.),
Spatiotemporal Databases: The Chorochronos Approach: Springer.

Frank, A., Bittner, S., & Raubal, M. (2001). Spatial and Cognitive Simulation with Multi-
agent Systems. In D. Montello (Ed.), Spatial Information Theory - Foundations of
Geographic Information Science, Proceedings of COSIT 2001, Morro Bay, CA, USA,
September 2001 (Vol. 2205, pp. 124-139). Berlin, Heidelberg, New York: Springer.

Frank, A., & Kuhn, W. (1995). Specifying Open GIS with Functional Languages. In M.
Egenhofer & J. Herring (Eds.), Advances in Spatial Databases (SSD'95) (Vol. 951, pp.
184-195). Portland, ME, USA: Springer.

Frank, A., & Kuhn, W. (1999). A Specification Language For Interoperable GIS. In M.
Goodchild & M. Egenhofer & R. Fegeas & C. Kottman (Eds.), Interoperating
Geographic Information Systems (pp. 123-132). Boston / Dordrecht / London: Kluwer
Academic Publishers.

Frank, A., & Raubal, M. (1999). Formal Specifications of Image Schemata - A Step to
Interoperability in Geographic Information Systems. Spatial Cognition and
Computation, 1(1), 67-101.

Gärdenfors, P. (2000). Conceptual Spaces - The Geometry of Thought. Cambridge, MA:
Bradford Books, MIT Press.

Genesereth, M., & Fikes, R. (1992). Knowledge Interchange Format. Stanford: Computer
Science Department, Stanford University.

Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin
Company.

Gimblett, H., Durnota, D., & Itami, R. (1997). Some Practical Issues in Designing and
Calibrating Artificial Human-Recreator Agents in GIS-based Simulated Worlds.
Complex International Journal - Workshop on Comparing Reactive (ALife-ish) and
Intentional Agents, 3.

Goguen, J., Thatcher, J., & Wagner, E. (1978). An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types. In R. Yeh
(Ed.), Current Trends in Programming Methodology (pp. 80-149). Englewood Cliffs,
NJ: Prentice-Hall.

Gruber, T. (1992). Ontolingua: A Mechanism to Support Portable Ontologies. Stanford:
Knowledge Systems Laboratory, Stanford University.

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2), 199-220.

Guarino, N. (1998). Formal Ontology and Information Systems. In N. Guarino (Ed.), Formal
Ontology in Information Systems (pp. 3-15). Trento, Italy: IOS Press.

Guarino, N., & Welty, C. (2002). Evaluating Ontological Decisions with OntoClean.
Communications of the ACM, 45(2), 61-65.

Guttag, J., Horowitz, E., & Musser, D. (1978). The Design of Data Type Specifications. In R.
Yeh (Ed.), Current Trends in Programming Methodology (Vol. 4 - Data Structuring,
pp. 60-79). Englewood Cliffs, NJ: Prentice-Hall.

Hamburger-Abendblatt. (1998, December 28, 1998). Auto in Havel gestürzt - Vom Computer
ins Wasser gelotst, pp. 15.

Hudak, P. (2000). The Haskell School of Expression: Learning Functional Programming
through Multimedia. New York: Cambridge University Press.

IEEE. (2003). Standard Upper Ontology (SUO) Working Group. http://suo.ieee.org/
ISO. (2001). GDF - Geographic Data Files - Version 4.0 (Draft International Standard

ISO/CD 2001-02-14): ISO/TC 204 N 34.
Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and

Reason. Chicago: The University of Chicago Press.
Konijn, M. (1998). Geographic Data Files (GDF). http://www.ertico.com/links/gdf/gdf.htm
Kottman, C. (1999). The Open GIS Consortium and progress toward interoperability in GIS.

In M. Goodchild & M. Egenhofer & R. Fegeas & C. Kottman (Eds.), Interoperating
Geographic Information Systems (pp. 39-54). Norwell, MA: Kluwer.

Kuhn, W. (1996). Semantics of Geographic Information. Vienna: Department of
Geoinformation.

Kuhn, W. (2001). Ontologies in support of activities in geographical space. International
Journal of Geographical Information Science, 15(7), 613-631.

Kuhn, W. (2003). Semantic Reference Systems. International Journal of Geographical
Information Science, 17(5), 405-409.

Kuhn, W., & Frank, A. (1991). A Formalization of Metaphors and Image-Schemas in User
Interfaces. In D. Mark & A. Frank (Eds.), Cognitive and Linguistic Aspects of
Geographic Space (NATO ASI Series ed., pp. 419-434). Dordrecht, Boston, London:
Kluwer Academic Publishers.

Kuhn, W., & Raubal, M. (2003). Implementing Semantic Reference Systems. In M. Gould &
R. Laurini & S. Coulondre (Eds.), AGILE 2003 - 6th AGILE Conference on
Geographic Information Science (pp. 63-72). Lyon, France: Presses Polytechniques et
Universitaires Romandes.

McKie, R. (1998). BMW's computer makes driver turn into drinker. The Observer, December
27, 1998.

Mota, L., Bento, J., & Botelho, L. (2002). Ontology definition languages for Multi-Agent
Systems: the Geographical Information Ontology case study, Workshop on Ontologies
in Agent Systems at 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems. Bologna, Italy.

Neumann, P. (1999). Car computer directs couple into river, The Risks Digest, Forum on
Risks to the Public in Computers and Related Systems, ACM Committee on Computers
and Public Policy (Volume 20: Issue 14, Sunday 3 January 1999) -
http://catless.ncl.ac.uk/Risks/20.14.html#subj1.1.

Raubal, M. (2001a). Human wayfinding in unfamiliar buildings: a simulation with a
cognizing agent. Cognitive Processing(2-3), 363-388.

Raubal, M. (2001b). Ontology and epistemology for agent-based wayfinding simulation.
International Journal of Geographical Information Science, 15(7), 653-665.

Raubal, M., Egenhofer, M., Pfoser, D., & Tryfona, N. (1997). Structuring Space with Image
Schemata: Wayfinding in Airports as a Case Study. In S. Hirtle & A. Frank (Eds.),
Spatial Information Theory—A Theoretical Basis for GIS, International Conference
COSIT '97, Laurel Highlands, PA (Vol. 1329, pp. 85-102). Berlin: Springer.

Riedemann, C., & Timm, C. (2003). Services for Data Integration. Data Science Journal,
2(26), 90-99.

Rodríguez, A., & Egenhofer, M. (1997). Image-Schemata-Based Spatial Inferences: The
Container-Surface Algebra. In S. Hirtle & A. Frank (Eds.), Spatial Information
Theory—A Theoretical Basis for GIS, International Conference COSIT '97, Laurel
Highlands, PA (Vol. 1329, pp. 35-52). Berlin: Springer.

Schreiber, A., Wielinga, B., de Hoog, R., Akkermans, J., & van de Velde, W. (1994).
CommonKADS: A comprehensive methodology for KBS development. IEEE Expert,
9, 28-37.

Smith, B. (2001). Objects and Their Environments: From Aristotle to Ecological Ontology. In
A. Frank & J. Raper & J.-P. Cheylan (Eds.), Life and Motion of Socio-economic Units
(Vol. 8, pp. 79-97). London: Taylor & Francis.

Smith, B. (2002). Ontology. In B. Heller & H. Herre & B. Smith (Eds.), Ontological Spring -
A Reader in Formal and Applied Ontology (pp. 1-14). Leipzig: IFOMIS.

Timpf, S., Volta, G., Pollock, D., & Egenhofer, M. (1992). A Conceptual Model of
Wayfinding Using Multiple Levels of Abstraction. In A. Frank & I. Campari & U.
Formentini (Eds.), GIS - From Space to Territory: Theories and Methods of Spatio-
Temporal Reasoning (Vol. 639, pp. 348-367). Pisa, Italy: Springer.

Welty, C., & Smith, B. (2001). Formal Ontology in Information Systems - Collected Papers
from the Second International Conference. New York: Association for Computing
Machinery, Inc. (ACM).

White, M. (1991). Car Navigation Systems. In D. Maguire & M. Goodchild & D. Rhind
(Eds.), Geographical Information Systems: Principles and Applications (Vol. 2, pp.
115-125). New York: Longman Scientific and Technical.

Winter, S., & Nittel, S. (forthcoming). Formal Information Modeling for Standardisation in
the Spatial Domain. International Journal of Geographical Information Science.

