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Abstract 
Information services assist people in their decision-making during the performance of 
certain tasks. In order to determine if a data source, which commits to a given 
ontology, can be employed for a service, the service provider needs to evaluate its 
usability and utility for the decision-making process. We propose to do this by 
simulating with the ontologies the tasks to be supported by the service. Such a 
simulation needs to access data about entities based on the actions they afford and the 
events they participate in. This requires that ontologies include information about 
these affordances and events. The paper demonstrates a formalized framework, which 
satisfies this requirement by including functions in the ontologies and making the 
specifications executable. A real-world scenario for a navigation service—instructions 
for crossing a river by car—demonstrates the applicability and benefits of the 
approach in a dynamic scenario. 



1. INTRODUCTION 

People use information services for assistance in situations where they have to make 
decisions. Consider, for example, a car navigation service, which calculates an optimal route 
and provides a sequence of instructions for driving along this route. Each instruction guides 
the user from one decision point to the next. Such a service uses data sources that commit, at 
least implicitly, to specific application ontologies, such as a navigation ontology, which may 
themselves commit to a domain or upper-level ontology (Kuhn & Raubal, 2003). Instructions 
should communicate to the user what she can do in a decision situation, i.e., the service needs 
to know about the roles that entities (represented by the data) play in actions (Fonseca, 
Egenhofer, Davis, & Câmara, 2002). Current ontologies are static and entity-based and do not 
specify these actions. Their emphasis is on attributes and relationships rather than operations 
(Kuhn, 2001). The importance of action-oriented approaches in GIScience was recently 
highlighted by an international research workshop1.  

The omission of actions and their context-dependent semantics from ontologies can lead 
to counterproductive assistance when using a navigation service. A German motorist 
experienced this when he drove his car into a river after following instructions from its 
navigation service (Hamburger-Abendblatt, 1998; McKie, 1998; Neumann, 1999). The 
system implied the presence of a bridge when it should have indicated a ferry. Although both 
bridge and ferry are links that afford river crossing to cars, the semantics of this action is 
crucially different depending on which entity it is applied to. Bridges are static and therefore 
continuously afford crossing. Ferry lines have a dynamic component and can only be used by 
a car when the car gets on the ferry. The accident of the motorist would not have occurred had 
the underlying ontology included such dynamic aspects. 

This paper presents a method to evaluate whether data committing to a particular 
application ontology can be usefully employed by an information service. The core idea is to 
simulate with the ontology the specific tasks to be supported by the service. This idea of 
ontology simulation is new and represents the main contribution of the paper. Such a 
simulation requires first that the ontology comprises not only entities, relationships, and 
attributes, but also actions, because these will be referred to in the simulations. Secondly, the 
actions need to be specified in an executable form, to enable the simulation without the need 
for further programming. The formalized2 approach shown here satisfies both requirements. It 
uses a functional specification (Frank & Kuhn, 1999), where ontologies are specified 
algebraically, and simulations are run in their initial model (Goguen, Thatcher, & Wagner, 
1978). 

Section 2 describes in more detail the case study of crossing rivers that we use to 
demonstrate the need for and applicability of the method. In section 3 we review previous 
work on ontologies for information systems from a dynamic point of view, and describe the 
general ideas behind ontology-based task simulation. Section 4 discusses the two main 
requirements ontologies need to satisfy in order to be used for task simulation, i.e., action 
specification and executability. It further introduces our formalization method, fulfilling these 
requirements. The formalized framework is applied to the case study in section 5 by 
simulating the task of crossing a river by car based on two different versions of an application 
ontology. The final section presents conclusions and directions for future research. 

                                                      
1 http://www.spatial.maine.edu/~actor2002/ 
2 In the sense of expressed in a formal language. 



2. CASE STUDY – CAR NAVIGATION SERVICE 

In order to demonstrate the proposed method for evaluating data sources through simulations 
in their ontologies, we use the real-world example from the introduction. It illustrates the kind 
of situation in which an evaluation is needed. 

2.1 Car navigation services 

A car navigation service is a special case of a location-based service. Its main task is to guide 
a driver from a starting point to a destination by calculating an optimal route and giving 
instructions for driving along this route. Traditional car navigation systems (White, 1991) 
integrate a positioning system, car sensors, and a local copy of the map data. Their derived 
turn-by-turn instructions have two major drawbacks: they are often based on out-of-date data 
and do not consider real-time traffic information. Car navigation services delivered via 
wireless communication networks solve these problems by including access to real-time 
traffic information and detailed up-to-date mapping data (Coleman, 2001). 

Digital map data for navigation is complex and includes multiple aspects of road 
networks. The geometry of the street network is needed for comparing and matching the car’s 
path with the street locations in the database. Topological information is used as input to 
optimal path algorithms. Data producers have handled these aspects successfully and data 
standards for describing road networks and transferring the data have been developed, such as 
the international standard GDF (Geographic Data File) (Konijn, 1998). These standards 
typically focus on the relevant geographic entities, their attributes, and relationships, but do 
not relate them directly to actions and related decisions that the data can support. In this paper 
we argue that the specification of real-world actions in which the features participate is an 
essential requirement for assessing data usability (Riedemann & Timm, 2003) and therefore 
needs to be represented explicitly. The case study from the navigation sector is used to 
demonstrate why and how. 

2.2 Background of the case study 

On December 25, 1998, a German motorist drove his car into the Havel river near Caputh in 
eastern Germany, after following instructions from its navigation system. A ferry operates 
across the river at that point, but the system was unaware of the crucial difference between 
crossing a river on a ferry and on a bridge (Hamburger-Abendblatt, 1998; McKie, 1998; 
Neumann, 1999). 

While one can muse about non-technical factors leading to the accident, we hypothesize 
that the core problem was one of semantics: When calculating a route, ferry lines and bridges 
are treated equally, as parts of the road network. When giving instructions, however, the 
different semantics of moving across the river need to be taken into account. A bridge can 
typically be crossed at any time, while a ferry operates at certain times only, and the driver 
should be instructed to wait for the next crossing.  

It has proven practically impossible to obtain specifics about the data and software that 
were used in that car. However, the fact that navigation systems use road data for at least two 
purposes, calculating routes and giving instructions, is undisputed (Timpf, Volta, Pollock, & 
Egenhofer, 1992). The software modules responsible for driving instructions assume that a 
link in a road network affords driving. If road data supporting route calculation (and treating 
ferry lines as regular parts of the network) are used to produce driving instructions, motorists 
will be guided into the water. This reasoning underlies our hypothesis about the semantic 



causes involved in the accident. We cannot prove this, but use it as an assumption for the sake 
of our argument: action semantics is key to assessing data usability. 

One kind of such road data is that following the GDF standard (Konijn, 1998). This 
standard adheres to a sophisticated semantic model of road data, differentiating three levels 
(see section 5 for details). It is the responsibility of the software producers to match these 
levels to the tasks supported by their systems. A mismatch between the two ontologies (both 
implicit, of the data and of the software) creates a potential semantic problem. 

Note that this is not an issue of incorrect data or software. It is one of a mismatch 
between the semantics of the two. The case appears to demonstrate the danger of separating 
data from the software that „knows“ about their semantics. Most of today’s navigation 
systems use a traditional data exchange architecture: data are digitized from maps and 
delivered (for instance, on commercially available CDs) to software systems that make certain 
assumptions about their meaning. Splitting the data from the operations lets semantics fall 
between the cracks. 

In an object-oriented service architecture, where data are only accessed by the operations 
they support, such semantic problems are in principle less likely. They only occur, if the 
semantics of the (correctly operating) service are not available to the user. Standards for 
interoperability like those of the OpenGIS Consortium3 represent a first step in this direction, 
though they cannot yet solve the issue of service semantics. Indeed, the current deviation from 
service interoperability by so-called “data interoperability” based on mark-up languages that 
separate data from operations further delays a solution. The architecture of today’s navigation 
systems, however, dates from a previous generation and can cause problems wherever the 
semantics varies from one context to another. 

3. ONTOLOGIES AND SIMULATION 

This section describes the current use of static ontologies for information systems, with its 
limitations from a dynamic point of view, and presents the idea of ontology-based task 
simulation. 

3.1 Ontologies for information systems 

In the traditional sense, ontology is a subfield of philosophy and can be defined as the science 
of existence. It tries to determine “the various types and categories of objects4 and relations in 
all realms of being” (Smith, 2001, p. 79). From an information systems and artificial 
intelligence perspective, ontologies are content theories identifying specific classes of objects 
and relations that exist in some domain (Chandrasekaran, Josephson, & Benjamins, 1999; 
Frank, forthcoming). Ontologies in the latter sense are language-dependent. Guarino (1998) 
distinguishes between Ontology in philosophy and ontologies in knowledge engineering. This 
paper focuses on ontologies for information systems. 

Gruber (1993) defines an ontology as “an explicit specification of a conceptualization.” 
Ontology designers have to make explicit choices of what to admit as referents in a particular 
system or language. According to their level of generality, different kinds of ontologies for 
information systems exist (Guarino, 1998): 

1. Top-level ontologies describe general concepts, such as space and time, independent 
from a particular domain. 

                                                      
3 http://www.opengis.org 
4 Like this and other sources, we use the terms „object“ and „entity“ interchangeably, where there is no danger 
of confusion between entities in the real world and their representation as objects in a database. 



2. Domain and task ontologies include the vocabulary for a generic domain (e.g., 
geospatial) or task (e.g., moving). 

3. Application ontologies represent concepts, which depend both on a particular domain 
and task. They are often specializations of domain and task ontologies. 

In order to be used in information systems, ontologies need to be formalized and 
machine-readable. Formal ontological theories include definitions of terms and sets of axioms 
(Smith, 2002). The current practice of formalizing ontologies uses various subsets and 
extensions of first-order logic (Welty & Smith, 2001). Examples are the IEEE’s Standard 
Upper Ontology (IEEE, 2003), which is developed with KIF (Genesereth & Fikes, 1992); 
GOL (Degen, Heller, & Herre, 2002), a framework for ontological engineering, and 
ONTOCLEAN (Guarino & Welty, 2002), a methodology for ontological analysis based on 
description logic. The formalized theories emphasize entities with attributes and relationships 
over processes, actions, and operations. Reasons include (Kuhn, 2001): 

• an emphasis on attributes and relationships rather than operations in object-oriented 
design methods; 

• the weakness of logic-based formal languages in dealing with operations and their 
semantics;  

• the lack of understanding how natural language represents actions—witness the 
noun-bias in WordNet and its theory (Fellbaum, 1998); 

• a general lack of theories of function (Barsalou, Sloman, & Chaigneau, forthcoming). 
Even if actions are specified in ontologies, the first-order logic formalisms allow only for pre-
and post-conditions to be stated, preventing simulations. Supporting human beings in 
geographic space requires ontologies that are developed paying full attention to both, entities 
and actions. We have previously suggested (Kuhn, 2001) that the tasks (or actions) to be 
supported by a Geographic Information System (GIS) should even determine the entities that 
are captured in an ontology. 

In this paper, we are less interested in putting labels on various kinds of ontologies than 
in the purposes that the ontologies serve. The support for simulating tasks that we request may 
be seen to belong to task or application ontologies (or to yet another kind). However, we 
avoid further contributions to the inflation of kinds of ontologies and simply suggest that an 
ontological description of an application needs to be able to answer questions about the tasks 
that can be performed in it. 

3.2 Ontology-driven simulation 

Simulation techniques are being widely used in scientific study and many other fields. The 
Oxford English Dictionary5 defines simulation as “the technique of imitating the behaviour of 
some situation or process (whether economic, military, mechanical, etc.) by means of a 
suitably analogous situation or apparatus, esp. for the purpose of study or personnel training.” 

For economic and ethical purposes it is often useful and necessary to test people’s 
interactions with systems before employing them in the real world. Tests show how systems 
work under various conditions and with different participants. Pilots, for example, perform 
extensive tests on flight simulators before flying a real aircraft. Despite this practical aspect, 
simulation of human behavior in space is a powerful research method to advance our 
understanding of the interaction between people and their environment. It allows for both the 
examination and testing of models and their underlying theory as well as the observation of 
the system’s behavior (Frank, Bittner, & Raubal, 2001; Gimblett, Durnota, & Itami, 1997; 
                                                      
5 http://www.oed.com/ 



Raubal, 2001b). In the geographical sciences this has led to the emerging field of 
geosimulation research6, mainly for the study and planning of urban systems. 

Simulations imitate processes in certain domains. In order to achieve useful results, a 
simulation has to be based on a consistent ontology, which represents plausible specifications 
of the application concepts. Ontologies are also needed for the integration of information from 
different applications or domains. Various simulations require the combination of higher-level 
and domain- or task-specific concepts. This can be done by relating top-level, domain, task, 
and application ontologies. In line with Fonseca’s (2002) term of “Ontology-Driven 
Information Systems” we can speak in this case of Ontology-Driven Simulation. 

Information services are provided by systems, which are based, implicitly or explicitly, 
on some application ontology. The services assist people in their decision-making in the real 
world. It is necessary to test their designs to avoid negative consequences for their potential 
users. Testing the service and its data source starts with testing the underlying ontology, i.e., 
the ontology that the data source commits to. If the data have the wrong semantics, services 
built on them will most likely fail to support their users appropriately. We propose to do such 
ontology testing by simulating with the ontology the tasks to be supported by the service. 

One could argue that the use for simulation purposes is a different concern from that of 
the specification of application concepts, and that it should not influence the form or contents 
of ontologies. However, we posit that the possible uses of data are a key aspect of the 
semantics that an information system ontology should define. The data uses are directly 
linked to the possible uses of entities in human actions (e.g., moving a car across a river). 
They should therefore be part of ontological specifications, rather than a special kind of 
application built on top of ontologies. Our method will show that ontologies and task 
simulations can indeed be produced in the same language and in one pass. 

4. REQUIREMENTS FOR SIMULATING TASKS WITH ONTOLOGIES 

Two key requirements ensue from the premise that ontologies should support task simulation. 
One is the possibility to include actions in the ontologies. The other is to make these action 
specifications testable, in the sense of letting their designers and users observe the effects they 
have on entities, attributes, and relationships. This section discusses the two requirements in 
detail and introduces our method of formalization. 

4.1 Ontologies with actions 

The first major requirement for simulating a task using an ontology is that the ontology 
describes sets of actions, in which its entities can participate. A task can be defined as a 
process within a specific time frame. A process is “a particular course of action intended to 
achieve a result” (WordNet7). If an ontology is used for simulating courses of action, then it 
must include the semantics of these actions. Sections 5.2 and 5.3 will present examples from 
our domain ontology, which demonstrate how action-based ontologies could look. 

Current ontology representation frameworks lack satisfactory ways of specifying actions 
(Mota, Bento, & Botelho, 2002). Cases for action-driven ontologies have been made by 
(Camara, Monteiro, Paiva, & de Souza, 2000) and (Kuhn, 2001) for geographical space. Their 
arguments for a dynamical perspective were that geographic entities are continuously being 
transformed and new ones created, and that the use of information about them is tied to 
human activities. For information services it is of particular importance what the entities can 

                                                      
6 http://www.geosimulation.org/ 
7 http://www.cogsci.princeton.edu/~wn/ 



be used for, i.e., what kind of action can the user perform with an entity? In general, 
information services offer pragmatic information to assist the user in the decision to perform a 
particular action. The usefulness of such information for a given task and context can be 
measured by the result after an action has been taken (Frank, 2003). 

The things that people distinguish in the world depend on the actions they afford. We 
have previously proposed to enrich ontologies with affordances (Kuhn, 2001; Raubal, 2001b) 
to compensate for their failure to integrate actions into domain theories. Affordances describe 
possibilities for actions with reference to a user (Gibson, 1979). Here, we focus on physical 
affordances (Raubal, 2001b), which require bundles of physical properties that match the 
agent’s properties and capabilities. Similar to (Kuhn, 2001) we adopt a broad sense of the 
term agent: for example, we consider a road to afford driving to a human being in a car. A 
more restrictive use might see the road as affording support for a car and the car as affording 
driving actions. 

4.2 Executable specifications 

The second major requirement for ontology-driven task simulation is that the actions in the 
ontology are testable. Current ontologies are mostly described in static formalisms and do not 
allow dynamic testing, i.e., the process of viewing an initial situation (state), performing an 
operation, and then viewing the resulting situation (state). An example is WordNet (Fellbaum, 
1998), an online lexical reference system, which is a top-down categorization including 
nouns, verbs, adjectives, and adverbs. It gives definitions of terms and places them in a 
hierarchy, but it is not formalized and therefore not testable. Many other efforts to produce 
ontologies use formal tools—mainly based on first-order logic—and cannot be dynamically 
tested (in the sense described above). Examples are KIF (Genesereth & Fikes, 1992), 
Ontolingua (Gruber, 1992), and KADS (Schreiber, Wielinga, de Hoog, Akkermans, & van de 
Velde, 1994). How such dynamic testing can be done is shown in section 5.4. 

In the area of geographic information, the Open GIS Consortium (Kottman, 1999) is 
developing formal software specifications, which can be seen as ontologies. One of their 
products is the Geography Markup Language (GML)8, an XML encoding for the transport 
and storage of geographic information. It is used to describe data and relationships between 
components. Features are described as lists of properties. For example, a road might be 
defined to have a name, a surface-construction, a destination, and a centerline. These 
properties can be modeled in UML (Booch, Rumbaugh, & Jacobson, 1999) as attributes of the 
feature class (Figure 1). Besides missing information on what a road can be used for and by 
which agent, i.e., the lack of specified actions, UML is only semi-formal (Winter & Nittel, 
forthcoming) and static and can therefore not be used for testing. 

                                                      
8 http://www.opengis.org/techno/specs/02-009/GML2-11.html 
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Figure 1: Representation of Road in UML (redrawn from http://www.opengis.org/techno/specs/02-
009/GML2-11.html). 

4.3 Formalization 

Our method of ontology formalization uses algebraic specifications, which present a natural 
way of representing actions. Algebraic specifications have proven useful for specifying data 
abstractions for spatial and temporal domains (Car & Frank, 1995; Frank, 2000; Kuhn, 1996; 
Raubal, 2001a; Winter & Nittel, forthcoming). Data abstractions are based on abstract data 
types, which are representation-independent formal definitions of all operations of a data type 
(Guttag, Horowitz, & Musser, 1978). Algebraic specifications describe objects (or entities) in 
terms of their operations (or actions). They do not express what the objects are, but how they 
behave. 

Algebraic specifications can also be used for testing at design time. Specifications for a 
software system can be tested before committing to build the system. This is exactly what is 
needed to fulfill our second requirement: tasks to be supported by a service need to be tested 
at design time, using the ontology of the data source. Algebraic specifications written in an 
executable programming language can be tested as a prototype of the service (Frank & Kuhn, 
1995). 

The tool chosen here is Hugs, a dialect of the functional language Haskell (Hudak, 2000), 
which includes the additional capabilities necessary for ontological engineering in our sense 
(Kuhn, 2001), namely the representation of 

• types: ontologies draw distinctions between types of objects; 
• type classes: types are characterized through collections of types, i.e., type classes, 

for which common functions are defined; 
• algebraic axioms: the meaning of an action is expressed through algebraic axioms; a 

set of axioms is a set of rules that describes the effects of an operation in terms of 
other operations on the same or on simpler types; 

Haskell is a purely functional language and provides typing as well as higher-order 
capabilities. In a nutshell, the necessary constructs for our case study formalization are the 
following:  

• algebraic data types: data Car = Car Name Position  
(introducing a user-defined type), 

• type synonyms: type Position = [Int], type Name = String  
(calling a pre-defined type differently), 

• type classes: class Named n where name :: n -> Name  
(collecting types sharing the specified behavior), 



• instances: instance Named Car where name (Car n p) = n  
(inheriting the class behavior to a type). 

Haskell can be seen as an executable ontology development and testing environment (Kuhn & 
Raubal, 2003). One of its major strengths is strong typing. It means that every object has a 
particular type and the compiler checks that operations can only be applied to certain types. 
This results in strongly typed ontologies, which allow for avoiding wrong assumptions, i.e., 
specifying incompatible types for operations. The following section shows how its Hugs 
dialect is used for this purpose in practice. 

5. ONTOLOGY SIMULATION FOR A CAR NAVIGATION SERVICE 

The formalization method is now applied to the case study introduced in section 2. We first 
present the GDF data model and the relevant data types. Next, the necessary concepts from an 
experimental domain ontology are introduced. The GDF data types are then related to the 
behavior specified for the concepts in the domain ontology. The resulting specifications can 
be executed and therefore used for simulating tasks to be supported by the navigation service. 
The simulation explains the ontology mismatch that presumably occurred in the case study. 

5.1 GDF9 application model 

The overall data model of GDF consists of feature themes, feature classes, features, complex 
features, attributes, and relations (ISO, 2001). All objects are conceptually divided into three 
different levels. Level 0 is concerned with the topology and defines the basic graph-theoretical 
building blocks: nodes, edges, and faces. Simple features are represented on level 1, whereas 
complex features, i.e., aggregates of simple features, are represented on level 2. The basic 
building blocks of simple features are stored on level 0, while complex features are defined 
with simple or other complex features. Attributes are characteristics of features, which are 
independent of other features. Relations are meaningful links between two or more features. 
Each feature belongs to exactly one feature class and one feature theme. 

The case study is concerned with the objects Node and Edge and the simple features Road 
element and Ferry connection representing the road network at levels 0 and 1 respectively. 
Figure 2 shows parts of the data model for the level 0. Figure 3 illustrates parts of the data 
model for levels 1 and 2 with respect to Roads and Ferries. Level 1 consists of the simple 
features Road element and Ferry connection and some of their attributes. These get 
aggregated to the complex features Road and Ferry at level 2. Definitions for the objects and 
features are given in Table 1. 
 

                                                      
9 Let us reiterate that our choice of the GDF data model to demonstrate the need for ontology-driven simulation 
does not imply that GDF actually played a role in the reported accident. 
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Figure 2: Extract of the GDF data model level 0 based on (ISO, 2001). 
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Figure 3: Part of the GDF data model level 1 and 2 for Roads and Ferries based on (ISO, 2001). 

 



Object / Feature Definition 
Node A zero-dimensional element that is a topological junction of two or 

more Edges, or an end point of an Edge. 
Edge A directed sequence of non-intersecting line segments with Nodes 

at each end. 
Road element A linear section of the earth, which is designed for or the result of 

vehicular movement. It serves as the smallest unit of the road 
network at Level 1 that is independent and having a Junction at 
each end. 

Ferry connection A vehicle transport facility between two fixed locations on the road 
network, which uses a prescribed mode of transport, for example, 
ship or train. 

Road A Level 2 Feature composed of one, many, or no Road elements 
and joining two Intersections. It serves as the smallest independent 
unit of a road network at Level 2. 

Ferry A set of Ferry connections that describe a passage of a particular 
ferry line. 

Table 1: GDF definitions for Node, Edge, Road element, Ferry connection, Road, and Ferry (ISO, 
2001). 

The objects in this application model, which are relevant for the case study shall now be 
represented as Hugs data types, together with their attributes: nodes with a name, edges with 
two nodes, and road elements and ferry connections with an edge as attribute. 

data Node = Node Name 

data Edge = Edge Node Node 

data RoadElement = RoadElement Edge 

data FerryConnection = FerryConnection Edge 

In addition, we define the necessary agents. These are cars (each car with a node as location 
attribute, the plural cars as lists of individual cars) and the car ferry, with the carried cars and 
a locating node as attributes: 

data Car = Car Node 

type Cars = [Car] 

data CarFerry = CarFerry Cars Node 

This completes the definition of the data types in our GDF application model. No axioms for 
these types have been defined yet. They will result from tying the data types to the domain 
ontology in section 5.3. 

5.2 Domain ontology 

A domain ontology serves as a semantic reference frame (Kuhn, 2003; Kuhn & Raubal, 2003) 
for the terms of data models in a domain. It represents the conceptualization underlying the 
use of the data model’s terms and provides a generic structure that can be employed for 
semantic reference in multiple applications. Here, we specify only the geospatial domain 
concepts to be used in the case study. They are part of a generic geospatial domain ontology 
currently under development. 

Two important basic concepts are naming and location. Objects have names (or other 
identifiers) and can be compared for equality using these names. Two objects are considered 



equal (identical) if they have the same identifier. The type of a name depends on the type of 
the object, which gets expressed as a so-called type dependency (object -> name). 

class Named object name | object -> name where 

 name :: object -> name 

instance (Eq name, Named object name) => Eq object where 

 object1 == object2 = (name object1) == (name object2) 

Objects also have locations (possibly of several different types): 
class LocatedAt object location where 

 location :: object -> location 

The following four categories correspond to basic cognitive patterns called image 
schemata. It has been proposed that meaning involves image-schematic structures 
(Gärdenfors, 2000; Johnson, 1987). Image schemata fall between abstract propositional 
structures and concrete images. They are developed through bodily experiences and influence 
our reasoning through the recurrence of form and function. An image schema can be seen as a 
generic, maybe universal, and abstract structure that helps people establish a connection 
between different experiences that have this same recurring structure. Previous formalized 
representations of image schemata consist of algebraic definitions (Frank & Raubal, 1999; 
Kuhn & Frank, 1991; Rodríguez & Egenhofer, 1997) and predicates (Raubal, Egenhofer, 
Pfoser, & Tryfona, 1997). Without attempting a cognitive, psychological, or linguistic 
validation, we have found image schemata to provide excellent candidates for geospatial 
domain concepts. The case for this choice will be made elsewhere. Here it should suffice to 
see the core role of image-schematic operators in defining the semantics of actions in 
navigation. 

Links connect two objects of the same type, with the object type being determined by the 
link type. The link schema introduces operations to ask for each end of the link and, given one 
end, for the other. 

class Link link object | link -> object where 

 from, to :: link -> object 

 other :: Eq object => link -> object -> object 

 other link object | object == from link = to link 

     | object == to link = from link 

     | otherwise = error "not linked" 

The Path schema allows us to express the behavior of moving: an object moves from one 
end of the path to the other end. 

class Path path object where 

 move :: path -> object -> object 

The Surface schema is specified through behavior that one commonly associates with 
support. One can put objects on surfaces and take them off again and one can check whether a 
specific object is on a surface: 

class Surface surface object where 

 putOn  :: object -> surface -> surface 

 takeOff :: object -> surface -> surface 

 isOn  :: object -> surface -> Bool 

A collection of individual objects is represented through the Collection schema. Here, we 
specify the special case of collections of homogeneous type elements (with the collection type 
determining the element type and being determined by it). Collections can be empty, one can 
add or remove an element, one can ask whether a specific element is in a collection, and one 
can apply a modifying operation to all elements. 

class Collection collection single | collection -> single,  



      single -> collection where 

 empty :: collection 

 addOne :: single -> collection -> collection 

 remove :: single -> collection -> collection 

 element  :: single -> collection -> Bool 

 doToAll :: (single -> single) -> collection -> collection 

The concepts of links, paths, surfaces, and collections are sufficient for the purpose of 
anchoring our case study application ontology in a (otherwise rudimentary) domain ontology. 

5.3 Application Ontology 

We now specify the concepts, which the GDF data model uses in terms of the domain 
ontology given in the previous sub-section, producing an application ontology for GDF 
navigation. First, we assign nodes to the class of named objects. This expresses that each node 
can be asked for its name, using the name function: 

instance Named Node Name where name (Node n) = n 

Then, edges are declared to be links between nodes. Note that, so far, edges had only been 
given two node attributes, without any semantics for these attributes. Now, edges are being 
subjected to the two functions that explain these as the “from” and “to” nodes:  

instance Link Edge Node where 

 from (Edge node1 node2) = node1 

 to (Edge node1 node2) = node2 

Next, cars and car ferries are stated to be objects located at nodes. Again, each of them only 
had a node attribute in the data model—here it is explained what that attribute means: 

instance LocatedAt Car Node where  

 location (Car node) = node 

instance LocatedAt CarFerry Node where  

 location (CarFerry cars node) = node 

Next, we say that car ferries act as surfaces, carrying a collection of cars: 
instance Surface CarFerry Car where 

 putOn car (CarFerry cars node) = if (location car == node)  

 then CarFerry (addOne car cars) node 

 else error "Car and CarFerry are not at same location" 

 takeOff car (CarFerry cars node) = CarFerry (remove car cars) node 

 isOn car (CarFerry cars node) = element car cars 

Car ferries can carry 0, 1, or many cars. This behavior is captured by the Collection class 
in the domain ontology. The data type Cars is, thus, declared to be an instance of this class. 
The behavior is the same as that of a list and the specification uses the Hugs List functions: 

instance Collection Cars Car where 

 empty = [] 

 addOne car cars = car:cars 

 remove car cars = delete car cars 

 element car cars = elem car cars 

 doToAll f cars = map f cars 

CarFerries are also conveyances for the cars they carry. This means that they can 
transport the cars across ferry connections (note the difference between the behaviors of move 
and transport!). The concept of Conveyance blends the domain concepts Path and Surface 
into the combined transport behavior.  

class (Path path conveyance, Surface conveyance object) =>  



 Conveyance conveyance path object where 

 transport :: path -> conveyance -> object -> object 

instance Conveyance CarFerry FerryConnection Car where 

 transport (FerryConnection edge) carFerry (Car node) =  

  Car (other edge node) 

Proceeding with the explanation of the GDF data types, we need to explain road elements 
and ferry connections (both from level 1). To begin with, they have the same behavior as an 
edge, linking two nodes in the navigation network: 

instance Link RoadElement Node where 

 from (RoadElement edge) = from edge 

 to (RoadElement edge) = to edge 

instance Link FerryConnection Node where 

 from (FerryConnection edge) = from edge 

 to (FerryConnection edge) = to edge 

In addition to the link behavior, road elements and ferry connections act as paths, but of two 
different kinds: Road elements are paths affording a car to move, 

instance Path RoadElement Car where 

 move (RoadElement edge) (Car node) = Car (other edge node) 

while ferry connections are paths for car ferries: 
instance Path FerryConnection CarFerry where 

 move (FerryConnection edge) (CarFerry cars node) = 

  CarFerry (doToAll (transport (FerryConnection edge) 

  (CarFerry cars node)) cars) (other edge node) 

Note that the move operation for ferries needs to make sure that all cars are transported with 
the ferry (which it does through the doToAll function from the Collection class). 

This completes the formalized explanation of the navigation concepts in our case study. 
All terms in the GDF data model have now been committed to the domain ontology of section 
5.2 and thereby given meaning. This lays the ground for simulating activities such as driving 
on roads or crossing a river on a ferry. 

5.4 Simulation and Hypothesis Testing 

The application ontology in the previous sub-section provides more than a static definition of 
navigation concepts. Its axioms are executable specifications of the actions occurring in 
navigation tasks of cars and ferries. Thus, they can be used to simulate these tasks, as we will 
now demonstrate. 

Let us first introduce some names used in the simulations. Two nodes, called “start” and 
“end”, are linked by “theEdge” and an individual car, “theCar”, is located at the start node: 

start = Node "start" 

end = Node "end" 

theEdge = Edge start end 

theCar = Car start 

The edge can serve, alternatively, as a road element or a ferry connection: 
theRoadElement = RoadElement theEdge 

theFerryConnection = FerryConnection theEdge 

Finally, various states of the car ferry (empty, loaded, and moved across the ferry connection) 
are defined: 

emptyCarFerry = CarFerry empty start 

loadedCarFerry = putOn theCar emptyCarFerry 



movedCarFerry = move theFerryConnection loadedCarFerry 

It is now straightforward to simulate the task of moving a car over a road element. We 
formulate this as a test, t1, whether the car is located at the end of the road element after 
moving over it. The value of t1 has to evaluate to “True”: 

t1 = location (move theRoadElement theCar) == end 

Similarly, t2 tests whether moving the loaded ferry over the ferry connection gets it to the end 
node: 

t2 = location (move theFerryConnection loadedCarFerry) == end 

And t3 tests the more interesting question whether the car is at the end of the ferry connection 
after being transported on the ferry: 

t3 = location (transport theFerryConnection loadedCarFerry  

  theCar) == end 

It turns out that, with the behavior specified in the application ontology, all these tests 
evaluate to “True.” However, the simulation of a car moving over a ferry connection (rather 
than a road element) fails. The following statement is rejected by the Hugs interpreter, 
because ferry connections have been defined as paths for ferries, not for cars: 

* move theFerryConnection theCar   

Similarly, it is not possible to move the car along the edge: 
* move theEdge theCar 

The results of these simulations confirm the behavior expected from cars, roads, and car 
ferries. So, what might have gone wrong in the accident? A likely possibility is that the 
navigation system used correct navigation data, but confused level 0 and level 1. To test this 
hypothesis, we need to define just one additional axiom, expressing the interpretation of level 
0 edges as paths for cars (no matter whether they represent road elements or ferry 
connections):  

instance Path Edge Car where 

 move edge (Car node) = Car (other edge node) 

With this axiom added to the application ontology, a test whether the car can move along the 
edge evaluates to “True”: 

t = location (move theEdge theCar) == end 

This interpretation applied by the navigation system is suitable for calculating routes, but not 
refined enough for giving instructions to a driver. While we do not know what has caused the 
accident on which our case study is based, the simulation demonstrates how such a hypothesis 
about an ontological mismatch between the data and the navigation system can be tested. 

6. CONCLUSIONS AND FUTURE WORK 

We presented the idea of ontology-based task simulation as a method for evaluating the 
usability of a data source for an information service supporting human activities. We 
identified two key requirements for ontologies to support the simulation of tasks: actions must 
be represented and testable in the ontologies. Current ontologies rarely include actions and 
are mainly formalized in a static way. We propose dynamic ontologies, consisting of a 
domain ontology that includes processes, and application ontologies explaining concepts in 
terms of the interaction between actions and entities. The application ontologies contain 
executable specifications of actions. The functional language Haskell was chosen as a tool for 
ontology design because it offers the required capabilities. 

 The method was demonstrated through a real-world scenario for a navigation service—
instructions for crossing a river by car. We first specified the relevant data types from a 



navigation model. Next, a domain ontology consisting of image-schematic concepts was 
introduced as a semantic reference frame. The data types were then related to the domain 
ontology in order to assign meaning to them. The resulting executable specifications of the 
actions occurring in navigation tasks were used for the task simulation10. This simulation 
demonstrated how an ontological mismatch between the data source and the navigation 
system can be discovered. Such simulations can therefore help a service provider to determine 
whether a data source can be employed by a service. In cases where it is intended that a 
service uses more than one data source with different semantics, each of the data sources 
needs to be wrapped separately into the domain ontology. This again results in sets of 
executable specifications, which can be used for simulation. 

Although the workload for a service provider to perform such simulations can be high, it 
seems to be the only comprehensive and reliable method to check whether a data source can 
be used by a service. In any case, one needs to specify the appropriate actions for the data set 
in order to evaluate whether they fit for the tasks to be supported by the service. Even then, 
having a designer acquire the data first and then look through the data set to see what could go 
wrong with it when used for a particular purpose is too expensive, error-prone and will most 
likely omit some important and special cases. 

The work presented here suggests many questions and directions for future research: 
1. The simulation of tasks in various (geospatial) information services requires the 

establishment of an extensive geospatial domain ontology. Our idea of using image-
schematic concepts as elements of a domain ontology seems plausible and useful. It 
is currently being further explored. 

2. The specifications of actions in the domain ontology can be seen as defining 
mediator functions for data. Thus, this special form of ontologies would deliver 
testable mediator specifications at the same time. Tests with this approach to data 
wrapping and mediating have been performed already [Gerding, forthcoming #873] 
and are currently being expanded. It appears that the tight connection between the 
software-engineering notion of mediating between information resources and the 
dynamic aspects of ontologies has not yet been exploited in theory or practice. 

3. The question of whether the method of ontology-based simulation and the tool can be 
efficiently used for evaluating data usability in more complex geospatial applications 
and scenarios can only be answered through more extensive case studies. We are 
currently undertaking several such studies in the areas of environmental planning and 
emergency management (http://musil.uni-muenster.de). These studies include the 
generalization of the approach to service chains and semantic translation. 

4. As a long-term goal, ontology-based simulation could be used as part of the semantic 
web to automatically evaluate the usability of different data sets for a given web 
service. For example, car drivers could log on to web-based car navigation services 
via a wireless connection and depending on the context (e.g., driver’s task and car’s 
position) relevant data sources for the service could be found in real time and ranked 
by their suitability. 

5. The idea of simulating tasks is also part of the bigger picture of testable ontologies. 
Shifting the focus from user needs to designers, the issue whether and how 
ontologies can be tested at design time is of growing importance. 

                                                      
10 The complete Hugs code for this paper is available (possibly in updated form) from the Experiments section 
of http://musil.uni-muenster.de. Hugs interpreters can be downloaded freely from http://www.haskell.org.   
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